缺氧诱导因子- 1α -诱导的肠上皮白细胞介素- 33表达有助于炎症性肠病的黏膜稳态

Mingming Sun, Chong He, Wei Wu, Guangxi Zhou, Fenghua Liu, Y. Cong, Zhanju Liu
{"title":"缺氧诱导因子- 1α -诱导的肠上皮白细胞介素- 33表达有助于炎症性肠病的黏膜稳态","authors":"Mingming Sun, Chong He, Wei Wu, Guangxi Zhou, Fenghua Liu, Y. Cong, Zhanju Liu","doi":"10.1111/cei.12896","DOIUrl":null,"url":null,"abstract":"Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor‐1α (HIF‐1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC‐derived HIF‐1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF‐1α and IL‐33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)−33 were correlated positively with that of HIF‐1α. A HIF‐1α‐interacting element was identified in the promoter region of IL‐33, indicating that HIF‐1α activity regulates IL‐33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF‐1α‐dependent IL‐33 expression in IEC. Our data thus demonstrate that HIF‐1α‐dependent IL‐33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.","PeriodicalId":10179,"journal":{"name":"Clinical & Experimental Immunology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Hypoxia inducible factor‐1α‐induced interleukin‐33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease\",\"authors\":\"Mingming Sun, Chong He, Wei Wu, Guangxi Zhou, Fenghua Liu, Y. Cong, Zhanju Liu\",\"doi\":\"10.1111/cei.12896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor‐1α (HIF‐1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC‐derived HIF‐1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF‐1α and IL‐33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)−33 were correlated positively with that of HIF‐1α. A HIF‐1α‐interacting element was identified in the promoter region of IL‐33, indicating that HIF‐1α activity regulates IL‐33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF‐1α‐dependent IL‐33 expression in IEC. Our data thus demonstrate that HIF‐1α‐dependent IL‐33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.\",\"PeriodicalId\":10179,\"journal\":{\"name\":\"Clinical & Experimental Immunology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Experimental Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/cei.12896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/cei.12896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

肠上皮细胞(IECs)是肠道微生物群的重要屏障,易受低氧张力的影响,特别是在肠道炎症期间。缺氧诱导因子- 1α (HIF - 1α)在炎症性肠病(IBD)的炎症粘膜中高表达,并在维持肠道稳态中起关键调节作用。然而,IEC衍生的HIF - 1α如何调节IBD患者的肠道免疫反应仍不完全清楚。我们在这里报道了HIF‐1α和IL‐33在IBD患者和DSS诱导的结肠炎小鼠炎症粘膜中的表达显著增加。白细胞介素(IL) - 33水平与HIF‐1α水平呈正相关。在IL - 33的启动子区域发现了一个HIF‐1α相互作用元件,表明HIF‐1α活性调节IL - 33的表达。此外,肿瘤坏死因子(TNF)促进了HIF‐1α‐依赖性IL‐33在IEC中的表达。因此,我们的数据表明,IEC中HIF - 1α依赖性IL - 33在IBD炎症粘膜中作为一种调节细胞因子,从而调节肠道炎症并维持粘膜稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypoxia inducible factor‐1α‐induced interleukin‐33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease
Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor‐1α (HIF‐1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC‐derived HIF‐1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF‐1α and IL‐33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)−33 were correlated positively with that of HIF‐1α. A HIF‐1α‐interacting element was identified in the promoter region of IL‐33, indicating that HIF‐1α activity regulates IL‐33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF‐1α‐dependent IL‐33 expression in IEC. Our data thus demonstrate that HIF‐1α‐dependent IL‐33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redundant role of PAD2 and PAD4 in the development of cardiovascular lesions in a mouse model of Kawasaki Disease vasculitis CpG Oligodeoxynucleotide-Coated Chitosan Nanoparticles Enhance Macrophage Proinflammatory Phenotype In Vitro Follow-up of Immune Response in Patients with Common Variable Immunodeficiency following SARS-CoV-2 Vaccination Immune profiling reveals umbilical cord blood mononuclear cells from South India display an IL-8 dominant, CXCL-10 deficient polyfunctional monocyte response to pathogen-associated molecular patterns (PAMPs) that is distinct from adult blood cells NKG2C+CD57+ natural killer with senescent features cells are induced in cutaneous leishmaniasis and accumulate in patients with lesional healing impairment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1