Philip Ayazi, Gabriel H. Monreal, H. Bleibel, F. Zamora, L. Watters
{"title":"化学降解减摩剂的稳定性及其与恢复电导率的关系","authors":"Philip Ayazi, Gabriel H. Monreal, H. Bleibel, F. Zamora, L. Watters","doi":"10.2118/206308-ms","DOIUrl":null,"url":null,"abstract":"\n Previously, it was shown that zeta potential could be used as a metric to determine friction reducer (FR) performance. Specifically, the extent of and how quickly the FR reaches peak friction reduction in source water. A correlation postulated from the previous work is zeta potentials relationship to an FR's stability during mechanical or chemical degradation. In other words, can zeta potential be used as a metric to determine the extent of polymer breaking and can this relationship be translated to regained conductivity? This paper describes a laboratory study of zeta potential measurements to track breaker reaction rates, stability of broken polymer dispersions, and the relationship between chemical degradation of FRs and regained conductivity.\n The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic and cationic FRs with varying types and concentrations of breakers at different temperatures and times. These metrics are then correlated with regain conductivity. A quantitative relationship exists between zeta potential, fluid rheology, and regain conductivity. Zeta potential evaluation of degraded FR's in frac fluids correlate to performance in regain conductivity testing. These measurements can expedite the selection of chemical breakers with respect to performance. Zeta potential measurements of degraded FR are indicative of broken FR dispersion stability which has impact on regain conductivity. Tracking behavior of cationic FR's using zeta potential reveals the materials can become anionic with time and temperature and become susceptible to agglomeration with iron. Zeta potential measurements can be used during a chemical breaker selection process as a viable supplement to industry standard tests for assessing the comparative effectiveness of chemical breakers in frac fluids.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Chemically Degraded Friction Reducers and Their Relationship to Regain Conductivity\",\"authors\":\"Philip Ayazi, Gabriel H. Monreal, H. Bleibel, F. Zamora, L. Watters\",\"doi\":\"10.2118/206308-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Previously, it was shown that zeta potential could be used as a metric to determine friction reducer (FR) performance. Specifically, the extent of and how quickly the FR reaches peak friction reduction in source water. A correlation postulated from the previous work is zeta potentials relationship to an FR's stability during mechanical or chemical degradation. In other words, can zeta potential be used as a metric to determine the extent of polymer breaking and can this relationship be translated to regained conductivity? This paper describes a laboratory study of zeta potential measurements to track breaker reaction rates, stability of broken polymer dispersions, and the relationship between chemical degradation of FRs and regained conductivity.\\n The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic and cationic FRs with varying types and concentrations of breakers at different temperatures and times. These metrics are then correlated with regain conductivity. A quantitative relationship exists between zeta potential, fluid rheology, and regain conductivity. Zeta potential evaluation of degraded FR's in frac fluids correlate to performance in regain conductivity testing. These measurements can expedite the selection of chemical breakers with respect to performance. Zeta potential measurements of degraded FR are indicative of broken FR dispersion stability which has impact on regain conductivity. Tracking behavior of cationic FR's using zeta potential reveals the materials can become anionic with time and temperature and become susceptible to agglomeration with iron. Zeta potential measurements can be used during a chemical breaker selection process as a viable supplement to industry standard tests for assessing the comparative effectiveness of chemical breakers in frac fluids.\",\"PeriodicalId\":10965,\"journal\":{\"name\":\"Day 3 Thu, September 23, 2021\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 23, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206308-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206308-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of Chemically Degraded Friction Reducers and Their Relationship to Regain Conductivity
Previously, it was shown that zeta potential could be used as a metric to determine friction reducer (FR) performance. Specifically, the extent of and how quickly the FR reaches peak friction reduction in source water. A correlation postulated from the previous work is zeta potentials relationship to an FR's stability during mechanical or chemical degradation. In other words, can zeta potential be used as a metric to determine the extent of polymer breaking and can this relationship be translated to regained conductivity? This paper describes a laboratory study of zeta potential measurements to track breaker reaction rates, stability of broken polymer dispersions, and the relationship between chemical degradation of FRs and regained conductivity.
The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic and cationic FRs with varying types and concentrations of breakers at different temperatures and times. These metrics are then correlated with regain conductivity. A quantitative relationship exists between zeta potential, fluid rheology, and regain conductivity. Zeta potential evaluation of degraded FR's in frac fluids correlate to performance in regain conductivity testing. These measurements can expedite the selection of chemical breakers with respect to performance. Zeta potential measurements of degraded FR are indicative of broken FR dispersion stability which has impact on regain conductivity. Tracking behavior of cationic FR's using zeta potential reveals the materials can become anionic with time and temperature and become susceptible to agglomeration with iron. Zeta potential measurements can be used during a chemical breaker selection process as a viable supplement to industry standard tests for assessing the comparative effectiveness of chemical breakers in frac fluids.