多频功率信道功率分组网络

IF 1 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Pub Date : 2023-06-25 DOI:10.1109/COMPEL52896.2023.10221194
W. Weaver, Trever J. Hassell, R. Robinett, D. Wilson
{"title":"多频功率信道功率分组网络","authors":"W. Weaver, Trever J. Hassell, R. Robinett, D. Wilson","doi":"10.1109/COMPEL52896.2023.10221194","DOIUrl":null,"url":null,"abstract":"Traditionally, power systems have been designed to operate with fixed frequency/voltage distribution systems. This frequency (0 Hz DC, 50 Hz European, 60 Hz, 400 Hz, or other) optimizes the system’s performance. This approach has worked well throughout history, enabling the development of a design, analysis, and maintenance tool suite. Regulating the voltage in this way results in additional control effort that can impact the system’s performance. Not to mention that single-frequency operation could be considered sub-optimal in energy and power density. In particular, this is expected to be true for systems with highly stochastic sources or loads (e.g., PV, wind). For example, consider military power systems designed to source hotel loads and large pulsed electric loads (e.g., rail gun, electromagnetic launcher). Introducing electric weapons moves impedance matching/energy storage from mechanical/chemical based to electrical-based. By definition, these pulsed loads are multi-frequency and impossible to match impedance to the sources using traditional methods without incurring additional losses in the system. Such pulses can also result in significant voltage swings/transients on the bus. This paper will present the foundations of a generalized power-packet network (PPN) that represents a multi-frequency power system where power channels can be impedance matched independently.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"134 1","pages":"1-6"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Frequency Power-Channel Power-Packet Networks\",\"authors\":\"W. Weaver, Trever J. Hassell, R. Robinett, D. Wilson\",\"doi\":\"10.1109/COMPEL52896.2023.10221194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, power systems have been designed to operate with fixed frequency/voltage distribution systems. This frequency (0 Hz DC, 50 Hz European, 60 Hz, 400 Hz, or other) optimizes the system’s performance. This approach has worked well throughout history, enabling the development of a design, analysis, and maintenance tool suite. Regulating the voltage in this way results in additional control effort that can impact the system’s performance. Not to mention that single-frequency operation could be considered sub-optimal in energy and power density. In particular, this is expected to be true for systems with highly stochastic sources or loads (e.g., PV, wind). For example, consider military power systems designed to source hotel loads and large pulsed electric loads (e.g., rail gun, electromagnetic launcher). Introducing electric weapons moves impedance matching/energy storage from mechanical/chemical based to electrical-based. By definition, these pulsed loads are multi-frequency and impossible to match impedance to the sources using traditional methods without incurring additional losses in the system. Such pulses can also result in significant voltage swings/transients on the bus. This paper will present the foundations of a generalized power-packet network (PPN) that represents a multi-frequency power system where power channels can be impedance matched independently.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"134 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10221194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

传统上,电力系统被设计为固定频率/电压的配电系统。该频率(0hz直流、50hz欧式、60hz、400hz或其他)可使系统性能达到最佳。这种方法在历史上一直运行良好,支持设计、分析和维护工具套件的开发。以这种方式调节电压会导致额外的控制工作,从而影响系统的性能。更不用说单频操作在能量和功率密度上可能被认为是次优的。特别是,对于具有高度随机源或负载(例如,光伏,风)的系统,预计这是正确的。例如,考虑军用电力系统的设计来源酒店负载和大脉冲电负载(例如,轨道炮,电磁发射器)。引入电子武器将阻抗匹配/能量存储从基于机械/化学转向基于电气。根据定义,这些脉冲负载是多频率的,并且不可能在不引起系统额外损耗的情况下使用传统方法将阻抗与源匹配。这样的脉冲也会导致总线上显著的电压波动/瞬变。本文将介绍一种代表多频电力系统的广义功率分组网络(PPN)的基础,其中功率信道可以独立进行阻抗匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Frequency Power-Channel Power-Packet Networks
Traditionally, power systems have been designed to operate with fixed frequency/voltage distribution systems. This frequency (0 Hz DC, 50 Hz European, 60 Hz, 400 Hz, or other) optimizes the system’s performance. This approach has worked well throughout history, enabling the development of a design, analysis, and maintenance tool suite. Regulating the voltage in this way results in additional control effort that can impact the system’s performance. Not to mention that single-frequency operation could be considered sub-optimal in energy and power density. In particular, this is expected to be true for systems with highly stochastic sources or loads (e.g., PV, wind). For example, consider military power systems designed to source hotel loads and large pulsed electric loads (e.g., rail gun, electromagnetic launcher). Introducing electric weapons moves impedance matching/energy storage from mechanical/chemical based to electrical-based. By definition, these pulsed loads are multi-frequency and impossible to match impedance to the sources using traditional methods without incurring additional losses in the system. Such pulses can also result in significant voltage swings/transients on the bus. This paper will present the foundations of a generalized power-packet network (PPN) that represents a multi-frequency power system where power channels can be impedance matched independently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
124
审稿时长
4.2 months
期刊介绍: COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.
期刊最新文献
Refining the physical description of charge trapping and detrapping in a transport model for dielectrics using an optimization algorithm Asymmetric air gap fault detection in linear permanent magnet Vernier machines Development and comparison of double-stator memory machines with parallel hybrid magnets Micromagnetics and multiscale hysteresis simulations of permanent magnets Optimization design of insulation structure of multiwinding high-frequency transformer based on response surface method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1