煤矿井下视频中基于头盔检测的矿工检测方法

Cai Limei, Qian Jiansheng
{"title":"煤矿井下视频中基于头盔检测的矿工检测方法","authors":"Cai Limei,&nbsp;Qian Jiansheng","doi":"10.1016/j.mstc.2011.06.016","DOIUrl":null,"url":null,"abstract":"<div><p>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners. This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 4","pages":"Pages 553-556"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.06.016","citationCount":"8","resultStr":"{\"title\":\"A method for detecting miners based on helmets detection in underground coal mine videos\",\"authors\":\"Cai Limei,&nbsp;Qian Jiansheng\",\"doi\":\"10.1016/j.mstc.2011.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners. This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</p></div>\",\"PeriodicalId\":100930,\"journal\":{\"name\":\"Mining Science and Technology (China)\",\"volume\":\"21 4\",\"pages\":\"Pages 553-556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mstc.2011.06.016\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining Science and Technology (China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674526411000986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Science and Technology (China)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674526411000986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了对煤矿危险区域进行自动监控,提出了从煤矿井下视频中检测安全帽来检测矿工的方法。该方法可以克服目标与背景相似度的影响。我们构建了头盔的标准图像,提取了四个方向特征,利用高斯函数对这些特征的分布进行建模,并将帧的局部图像划分为头盔和非头盔类。实验结果表明,该方法可以有效地检测出头盔。检出率为83.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method for detecting miners based on helmets detection in underground coal mine videos

In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners. This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An experimental study of a yielding support for roadways constructed in deep broken soft rock under high stress Simulation experiment on anti-penetration capability of anchored rock mass An energy efficiency clustering routing protocol for WSNs in confined area Effects of strain rates on mechanical properties of limestone under high temperature Influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1