KeyTime:超精确的预测笔画手势的产生时间

Luis A. Leiva, Daniel Martín-Albo, R. Plamondon, Radu-Daniel Vatavu
{"title":"KeyTime:超精确的预测笔画手势的产生时间","authors":"Luis A. Leiva, Daniel Martín-Albo, R. Plamondon, Radu-Daniel Vatavu","doi":"10.1145/3173574.3173813","DOIUrl":null,"url":null,"abstract":"We introduce KeyTime, a new technique and accompanying software for predicting the production times of users' stroke gestures articulated on touchscreens. KeyTime employs the principles and concepts of the Kinematic Theory, such as lognormal modeling of stroke gestures' velocity profiles, to estimate gesture production times significantly more accurately than existing approaches. Our experimental results obtained on several public datasets show that KeyTime predicts user-independent production times that correlate r=.99 with groundtruth from just one example of a gesture articulation, while delivering an average error in the predicted time magnitude that is 3 to 6 times smaller than that delivered by CLC, the best prediction technique up to date. Moreover, KeyTime reports a wide range of useful statistics, such as the trimmed mean, median, standard deviation, and confidence intervals, providing practitioners with unprecedented levels of accuracy and sophistication to characterize their users' a priori time performance with stroke gesture input.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"KeyTime: Super-Accurate Prediction of Stroke Gesture Production Times\",\"authors\":\"Luis A. Leiva, Daniel Martín-Albo, R. Plamondon, Radu-Daniel Vatavu\",\"doi\":\"10.1145/3173574.3173813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce KeyTime, a new technique and accompanying software for predicting the production times of users' stroke gestures articulated on touchscreens. KeyTime employs the principles and concepts of the Kinematic Theory, such as lognormal modeling of stroke gestures' velocity profiles, to estimate gesture production times significantly more accurately than existing approaches. Our experimental results obtained on several public datasets show that KeyTime predicts user-independent production times that correlate r=.99 with groundtruth from just one example of a gesture articulation, while delivering an average error in the predicted time magnitude that is 3 to 6 times smaller than that delivered by CLC, the best prediction technique up to date. Moreover, KeyTime reports a wide range of useful statistics, such as the trimmed mean, median, standard deviation, and confidence intervals, providing practitioners with unprecedented levels of accuracy and sophistication to characterize their users' a priori time performance with stroke gesture input.\",\"PeriodicalId\":20512,\"journal\":{\"name\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173574.3173813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们介绍KeyTime,一种新技术和配套软件,用于预测用户在触摸屏上表达的笔触手势的产生时间。KeyTime采用运动学理论的原理和概念,如笔划手势的速度曲线的对数正态建模,以比现有方法更准确地估计手势生产时间。我们在几个公共数据集上获得的实验结果表明,KeyTime预测与r=相关的用户无关的生产时间。在预测时间量级上的平均误差比目前最好的预测技术CLC所提供的误差小3到6倍。此外,KeyTime报告了广泛的有用统计数据,如修剪平均值、中位数、标准偏差和置信区间,为从业者提供了前所未有的准确性和复杂性,以表征用户使用笔划手势输入的先验时间表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KeyTime: Super-Accurate Prediction of Stroke Gesture Production Times
We introduce KeyTime, a new technique and accompanying software for predicting the production times of users' stroke gestures articulated on touchscreens. KeyTime employs the principles and concepts of the Kinematic Theory, such as lognormal modeling of stroke gestures' velocity profiles, to estimate gesture production times significantly more accurately than existing approaches. Our experimental results obtained on several public datasets show that KeyTime predicts user-independent production times that correlate r=.99 with groundtruth from just one example of a gesture articulation, while delivering an average error in the predicted time magnitude that is 3 to 6 times smaller than that delivered by CLC, the best prediction technique up to date. Moreover, KeyTime reports a wide range of useful statistics, such as the trimmed mean, median, standard deviation, and confidence intervals, providing practitioners with unprecedented levels of accuracy and sophistication to characterize their users' a priori time performance with stroke gesture input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scaling Classroom IT Skill Tutoring: A Case Study from India Convey: Exploring the Use of a Context View for Chatbots Make Yourself at Phone: Reimagining Mobile Interaction Architectures With Emergent Users Forte Conveying the Perception of Kinesthetic Feedback in Virtual Reality using State-of-the-Art Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1