V. Panteleeva, Ilya S. Votinov, Igor S. Polkovnikov, Anatoliy В. Shein
{"title":"硫酸电解液中锰的阴极氢释放动力学","authors":"V. Panteleeva, Ilya S. Votinov, Igor S. Polkovnikov, Anatoliy В. Shein","doi":"10.17308/kcmf.2019.21/1153","DOIUrl":null,"url":null,"abstract":"Методами поляризационных и импедансных измерений изучена кинетика реакции выделения водорода на MnSi-электроде в сернокислых растворах с различной концентрацией ионов водорода. Сделано предположение о механизме выделения водорода на силициде. Отмечено влияние тонкой оксидной пленки на кинетику выделения водорода на MnSi при невысоких катодных поляризациях. \n \n \n \nREFERENCES \n \nRotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.) \nAntropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.) \nShamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107 \nVijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7 \nVijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P \nShein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.) \nVigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181 \nMeyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076 \nKichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.) \nEftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125 \nSchalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. https://doi.org/10.1016/j.electacta.2017.11.069 \nKuz’minykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. Izvestiya vuzov. Khimiya i khim. tekhnologiya, 2019, v. 62(2), pp. 59–64. https://doi.org/10.6060/ivkkt. 20196202.5750 (in Russ.) \nSamsonov G. V., Dvorina L. A., Rud’ B.M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.) \nSamsonov G. V., Vinitskii I. M. Tugoplavkie soedineniya [Refractory compounds]. Moscow, Metallurgiya Publ., 1976, 560 p. (in Russ.) \nYamasaki T., Okada S., Kamamoto K., Kudou K. Crystal Growth and properties of manganese-silicon system compounds by high-temperature tin solution method. Pacific Science Review, 2012, v. 14(3), pp. 275. \nLee M., Onose Y., Tokura Y., Ong N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B., 2007, v. 75(17), p. 172403. https://doi.org/10.1103/PhysRevB.75.172403 \nNeubauer A., Pfl eiderer C., Binz B., Rosch A., Ritz R., Niklowitz P. G., Boni P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett., 2009, v. 102(18), pp. 186602. https://doi.org/10.1103/PhysRevLett.102.186602 \nSukhotin A. M. Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.) \nZhang X. G. Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum Publishers, New York, 2001. 510 p. \nXu X., Bojkov H., Goodman D. W. Electrochemical study of ultrathin silica fi lms supported on a platinum substrate. J. Vac. Sci. Technol., 1994, v. A12(4), pp. 1882–1885. https://doi.org/10.1116/1.579022 \nHarrington D. A., Conway B. E. ac Impedance of Faradaic reactions involving electrosorbed intermediates — I. Kinetic theory. Electrochim. Acta, v. 32(12), pp. 1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1 \nOrazem M. E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons, Hoboken, New York, 2008, 533 p. \nKichigin V. I., Sherstobitova I. N., Shein A. B. Impedans elektrokhimicheskikh i korrozionnykh sistem: ucheb. posobie po spetskursu [The impedance of electrochemical and corrosion systems: textbook. special course allowance]. Perm’, Perm. gos. un-t Publ., 2009, 239 p. (in Russ.) \nKichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochemica Acta, 2014, v. 138, pp. 325–333. https://doi.org/10.1016/j.electacta.2014.06.114 \nKichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Vestnik Permskogo Universiteta. Ser. Khimiya, 2018, v. 8, iss. 3, pp. 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 (in Russ.) \nKichigin V. I., Shein A. B. Infl uence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. Electrochemica Acta, 2016, v. 201, pp. 233–239. https://doi.org/10.1016/j.electacta.2016.03.194 \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"КИНЕТИКА КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА НА МОНОСИЛИЦИДЕ МАРГАНЦА В СЕРНОКИСЛОМ ЭЛЕКТРОЛИТЕ\",\"authors\":\"V. Panteleeva, Ilya S. Votinov, Igor S. Polkovnikov, Anatoliy В. Shein\",\"doi\":\"10.17308/kcmf.2019.21/1153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Методами поляризационных и импедансных измерений изучена кинетика реакции выделения водорода на MnSi-электроде в сернокислых растворах с различной концентрацией ионов водорода. Сделано предположение о механизме выделения водорода на силициде. Отмечено влияние тонкой оксидной пленки на кинетику выделения водорода на MnSi при невысоких катодных поляризациях. \\n \\n \\n \\nREFERENCES \\n \\nRotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.) \\nAntropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.) \\nShamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107 \\nVijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7 \\nVijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P \\nShein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.) \\nVigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181 \\nMeyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076 \\nKichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.) \\nEftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125 \\nSchalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. https://doi.org/10.1016/j.electacta.2017.11.069 \\nKuz’minykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. Izvestiya vuzov. Khimiya i khim. tekhnologiya, 2019, v. 62(2), pp. 59–64. https://doi.org/10.6060/ivkkt. 20196202.5750 (in Russ.) \\nSamsonov G. V., Dvorina L. A., Rud’ B.M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.) \\nSamsonov G. V., Vinitskii I. M. Tugoplavkie soedineniya [Refractory compounds]. Moscow, Metallurgiya Publ., 1976, 560 p. (in Russ.) \\nYamasaki T., Okada S., Kamamoto K., Kudou K. Crystal Growth and properties of manganese-silicon system compounds by high-temperature tin solution method. Pacific Science Review, 2012, v. 14(3), pp. 275. \\nLee M., Onose Y., Tokura Y., Ong N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B., 2007, v. 75(17), p. 172403. https://doi.org/10.1103/PhysRevB.75.172403 \\nNeubauer A., Pfl eiderer C., Binz B., Rosch A., Ritz R., Niklowitz P. G., Boni P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett., 2009, v. 102(18), pp. 186602. https://doi.org/10.1103/PhysRevLett.102.186602 \\nSukhotin A. M. Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.) \\nZhang X. G. Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum Publishers, New York, 2001. 510 p. \\nXu X., Bojkov H., Goodman D. W. Electrochemical study of ultrathin silica fi lms supported on a platinum substrate. J. Vac. Sci. Technol., 1994, v. A12(4), pp. 1882–1885. https://doi.org/10.1116/1.579022 \\nHarrington D. A., Conway B. E. ac Impedance of Faradaic reactions involving electrosorbed intermediates — I. Kinetic theory. Electrochim. Acta, v. 32(12), pp. 1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1 \\nOrazem M. E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons, Hoboken, New York, 2008, 533 p. \\nKichigin V. I., Sherstobitova I. N., Shein A. B. Impedans elektrokhimicheskikh i korrozionnykh sistem: ucheb. posobie po spetskursu [The impedance of electrochemical and corrosion systems: textbook. special course allowance]. Perm’, Perm. gos. un-t Publ., 2009, 239 p. (in Russ.) \\nKichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochemica Acta, 2014, v. 138, pp. 325–333. https://doi.org/10.1016/j.electacta.2014.06.114 \\nKichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Vestnik Permskogo Universiteta. Ser. Khimiya, 2018, v. 8, iss. 3, pp. 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 (in Russ.) \\nKichigin V. I., Shein A. B. Infl uence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. Electrochemica Acta, 2016, v. 201, pp. 233–239. https://doi.org/10.1016/j.electacta.2016.03.194 \\n\",\"PeriodicalId\":17879,\"journal\":{\"name\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17308/kcmf.2019.21/1153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
阻抗电阻抗系统;电化学和腐蚀系统的阻抗:教科书。特殊课程津贴]。烫发,烫发。un-t出版。, 2009, 239页(俄文)。李建军,李建军。电化学阻抗谱中析氢机理的诊断标准。电化学学报,2014,v. 138, pp. 325-333。https://doi.org/10.1016/j.electacta.2014.06.114 Kichigin V. I., Shein A. B.阻抗谱法中析氢反应机理的附加准则。Vestnik Permskogo大学。爵士。地球科学进展,2018,vol . 8, no . 1。3,第316-324页。https://doi.org/10.17072/2223-1838-2018-3-316-324(俄文)王晓明,王晓明,王晓明,等。吸附氢对析氢反应阻抗参数的影响。电化学学报,2016,v. 201, pp. 233-239。https://doi.org/10.1016/j.electacta.2016.03.194 阻抗电阻抗系统;电化学和腐蚀系统的阻抗:教科书。特殊课程津贴]。烫发,烫发。un-t出版。, 2009, 239页(俄文)。李建军,李建军。电化学阻抗谱中析氢机理的诊断标准。电化学学报,2014,v. 138, pp. 325-333。https://doi.org/10.1016/j.electacta.2014.06.114 Kichigin V. I., Shein A. B.阻抗谱法中析氢反应机理的附加准则。Vestnik Permskogo大学。爵士。地球科学进展,2018,vol . 8, no . 1。3,第316-324页。https://doi.org/10.17072/2223-1838-2018-3-316-324(俄文)王晓明,王晓明,王晓明,等。吸附氢对析氢反应阻抗参数的影响。电化学学报,2016,v. 201, pp. 233-239。https://doi.org/10.1016/j.electacta.2016.03.194
КИНЕТИКА КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА НА МОНОСИЛИЦИДЕ МАРГАНЦА В СЕРНОКИСЛОМ ЭЛЕКТРОЛИТЕ
Методами поляризационных и импедансных измерений изучена кинетика реакции выделения водорода на MnSi-электроде в сернокислых растворах с различной концентрацией ионов водорода. Сделано предположение о механизме выделения водорода на силициде. Отмечено влияние тонкой оксидной пленки на кинетику выделения водорода на MnSi при невысоких катодных поляризациях.
REFERENCES
Rotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.)
Antropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.)
Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107
Vijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7
Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P
Shein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.)
Vigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181
Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076
Kichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.)
Eftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125
Schalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. https://doi.org/10.1016/j.electacta.2017.11.069
Kuz’minykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. Izvestiya vuzov. Khimiya i khim. tekhnologiya, 2019, v. 62(2), pp. 59–64. https://doi.org/10.6060/ivkkt. 20196202.5750 (in Russ.)
Samsonov G. V., Dvorina L. A., Rud’ B.M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.)
Samsonov G. V., Vinitskii I. M. Tugoplavkie soedineniya [Refractory compounds]. Moscow, Metallurgiya Publ., 1976, 560 p. (in Russ.)
Yamasaki T., Okada S., Kamamoto K., Kudou K. Crystal Growth and properties of manganese-silicon system compounds by high-temperature tin solution method. Pacific Science Review, 2012, v. 14(3), pp. 275.
Lee M., Onose Y., Tokura Y., Ong N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B., 2007, v. 75(17), p. 172403. https://doi.org/10.1103/PhysRevB.75.172403
Neubauer A., Pfl eiderer C., Binz B., Rosch A., Ritz R., Niklowitz P. G., Boni P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett., 2009, v. 102(18), pp. 186602. https://doi.org/10.1103/PhysRevLett.102.186602
Sukhotin A. M. Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.)
Zhang X. G. Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum Publishers, New York, 2001. 510 p.
Xu X., Bojkov H., Goodman D. W. Electrochemical study of ultrathin silica fi lms supported on a platinum substrate. J. Vac. Sci. Technol., 1994, v. A12(4), pp. 1882–1885. https://doi.org/10.1116/1.579022
Harrington D. A., Conway B. E. ac Impedance of Faradaic reactions involving electrosorbed intermediates — I. Kinetic theory. Electrochim. Acta, v. 32(12), pp. 1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1
Orazem M. E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons, Hoboken, New York, 2008, 533 p.
Kichigin V. I., Sherstobitova I. N., Shein A. B. Impedans elektrokhimicheskikh i korrozionnykh sistem: ucheb. posobie po spetskursu [The impedance of electrochemical and corrosion systems: textbook. special course allowance]. Perm’, Perm. gos. un-t Publ., 2009, 239 p. (in Russ.)
Kichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochemica Acta, 2014, v. 138, pp. 325–333. https://doi.org/10.1016/j.electacta.2014.06.114
Kichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Vestnik Permskogo Universiteta. Ser. Khimiya, 2018, v. 8, iss. 3, pp. 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 (in Russ.)
Kichigin V. I., Shein A. B. Infl uence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. Electrochemica Acta, 2016, v. 201, pp. 233–239. https://doi.org/10.1016/j.electacta.2016.03.194