二氧化钛-水纳米流体直接吸收太阳能集热器的实验研究

Rahul Khatri, Mukesh Kumar, Rakesh Jiyani
{"title":"二氧化钛-水纳米流体直接吸收太阳能集热器的实验研究","authors":"Rahul Khatri, Mukesh Kumar, Rakesh Jiyani","doi":"10.1109/ICGEA.2018.8356312","DOIUrl":null,"url":null,"abstract":"In the present work thermal performance of Direct Absorption Solar Collector (DASC) with TiO2-water (nanofluid) as working fluid was investigated experimentally. DASC utilizes the principle of volumetric absorption i.e. solar energy absorbed by a thin film of working fluid flowing over the collector plate. The experimental study was carried out in four phases; in first phase flow rate was kept 2 lpm and volume fraction of nanofluid was changed from 0.001% to 0.007%, in second and third phase same procedure was followed for 2.5 lpm and 1.5 lpm flow rates respectively. In fourth phase the experiment was carried out with water for 1.5 lpm, 2 lpm and 2.5 lpm and the performance of collector was analyzed. Results obtained suggest that for water as a working fluid, thermal performance of the DASC at 2 lpm was better. Secondly, when nanofluid was used as a working fluid, thermal performance of the collector was found better for 0.005% volume concentration.","PeriodicalId":6536,"journal":{"name":"2018 2nd International Conference on Green Energy and Applications (ICGEA)","volume":"03 1","pages":"59-62"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Experimental Investigation on Direct Absorption Solar Collector using TiO2-Water Nanofluid\",\"authors\":\"Rahul Khatri, Mukesh Kumar, Rakesh Jiyani\",\"doi\":\"10.1109/ICGEA.2018.8356312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work thermal performance of Direct Absorption Solar Collector (DASC) with TiO2-water (nanofluid) as working fluid was investigated experimentally. DASC utilizes the principle of volumetric absorption i.e. solar energy absorbed by a thin film of working fluid flowing over the collector plate. The experimental study was carried out in four phases; in first phase flow rate was kept 2 lpm and volume fraction of nanofluid was changed from 0.001% to 0.007%, in second and third phase same procedure was followed for 2.5 lpm and 1.5 lpm flow rates respectively. In fourth phase the experiment was carried out with water for 1.5 lpm, 2 lpm and 2.5 lpm and the performance of collector was analyzed. Results obtained suggest that for water as a working fluid, thermal performance of the DASC at 2 lpm was better. Secondly, when nanofluid was used as a working fluid, thermal performance of the collector was found better for 0.005% volume concentration.\",\"PeriodicalId\":6536,\"journal\":{\"name\":\"2018 2nd International Conference on Green Energy and Applications (ICGEA)\",\"volume\":\"03 1\",\"pages\":\"59-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd International Conference on Green Energy and Applications (ICGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGEA.2018.8356312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Green Energy and Applications (ICGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGEA.2018.8356312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文对以二氧化钛-水(纳米流体)为工质的直接吸收太阳能集热器(DASC)的工作热性能进行了实验研究。DASC利用体积吸收原理,即太阳能被流过集热器板的工作流体薄膜吸收。实验研究分四个阶段进行;第一相流速为2 LPM,纳米流体体积分数从0.001%变化到0.007%,第二相和第三相流速分别为2.5 LPM和1.5 LPM时采用相同的方法。第四阶段分别在1.5 lpm、2 lpm和2.5 lpm的水浓度下进行了实验,并对集热器的性能进行了分析。结果表明,以水为工质时,在2lpm时,DASC的热工性能较好。其次,当纳米流体作为工作流体时,当体积浓度为0.005%时,集热器的热性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Experimental Investigation on Direct Absorption Solar Collector using TiO2-Water Nanofluid
In the present work thermal performance of Direct Absorption Solar Collector (DASC) with TiO2-water (nanofluid) as working fluid was investigated experimentally. DASC utilizes the principle of volumetric absorption i.e. solar energy absorbed by a thin film of working fluid flowing over the collector plate. The experimental study was carried out in four phases; in first phase flow rate was kept 2 lpm and volume fraction of nanofluid was changed from 0.001% to 0.007%, in second and third phase same procedure was followed for 2.5 lpm and 1.5 lpm flow rates respectively. In fourth phase the experiment was carried out with water for 1.5 lpm, 2 lpm and 2.5 lpm and the performance of collector was analyzed. Results obtained suggest that for water as a working fluid, thermal performance of the DASC at 2 lpm was better. Secondly, when nanofluid was used as a working fluid, thermal performance of the collector was found better for 0.005% volume concentration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and CFD Analysis of Solar Air Heater with Rectangular Shaped Hollow Bodies Experimental Analysis of Glazed Windows for Green Buildings Monitoring System for Solar Panel Using Smartphone Based on Microcontroller Size-Selective Adsorption in Separation of Products from Pyrogallol and Methyl Linoleate Oxidative Coupling Reaction Integrated Water Cycle Management System for Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1