扩展大数据缺失价值估算:皮提亚vs哥斯拉

C. Anagnostopoulos, P. Triantafillou
{"title":"扩展大数据缺失价值估算:皮提亚vs哥斯拉","authors":"C. Anagnostopoulos, P. Triantafillou","doi":"10.1145/2623330.2623615","DOIUrl":null,"url":null,"abstract":"Solving the missing-value (MV) problem with small estimation errors in big data environments is a notoriously resource-demanding task. As datasets and their user community continuously grow, the problem can only be exacerbated. Assume that it is possible to have a single machine (`Godzilla'), which can store the massive dataset and support an ever-growing community submitting MV imputation requests. Is it possible to replace Godzilla by employing a large number of cohort machines so that imputations can be performed much faster, engaging cohorts in parallel, each of which accesses much smaller partitions of the original dataset? If so, it would be preferable for obvious performance reasons to access only a subset of all cohorts per imputation. In this case, can we decide swiftly which is the desired subset of cohorts to engage per imputation? But efficiency and scalability is just one key concern! Is it possible to do the above while ensuring comparable or even better than Godzilla's imputation estimation errors? In this paper we derive answers to these fundamentals questions and develop principled methods and a framework which offer large performance speed-ups and better, or comparable, errors to that of Godzilla, independently of which missing-value imputation algorithm is used. Our contributions involve Pythia, a framework and algorithms for providing the answers to the above questions and for engaging the appropriate subset of cohorts per MV imputation request. Pythia functionality rests on two pillars: (i) dataset (partition) signatures, one per cohort, and (ii) similarity notions and algorithms, which can identify the appropriate subset of cohorts to engage. Comprehensive experimentation with real and synthetic datasets showcase our efficiency, scalability, and accuracy claims.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Scaling out big data missing value imputations: pythia vs. godzilla\",\"authors\":\"C. Anagnostopoulos, P. Triantafillou\",\"doi\":\"10.1145/2623330.2623615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving the missing-value (MV) problem with small estimation errors in big data environments is a notoriously resource-demanding task. As datasets and their user community continuously grow, the problem can only be exacerbated. Assume that it is possible to have a single machine (`Godzilla'), which can store the massive dataset and support an ever-growing community submitting MV imputation requests. Is it possible to replace Godzilla by employing a large number of cohort machines so that imputations can be performed much faster, engaging cohorts in parallel, each of which accesses much smaller partitions of the original dataset? If so, it would be preferable for obvious performance reasons to access only a subset of all cohorts per imputation. In this case, can we decide swiftly which is the desired subset of cohorts to engage per imputation? But efficiency and scalability is just one key concern! Is it possible to do the above while ensuring comparable or even better than Godzilla's imputation estimation errors? In this paper we derive answers to these fundamentals questions and develop principled methods and a framework which offer large performance speed-ups and better, or comparable, errors to that of Godzilla, independently of which missing-value imputation algorithm is used. Our contributions involve Pythia, a framework and algorithms for providing the answers to the above questions and for engaging the appropriate subset of cohorts per MV imputation request. Pythia functionality rests on two pillars: (i) dataset (partition) signatures, one per cohort, and (ii) similarity notions and algorithms, which can identify the appropriate subset of cohorts to engage. Comprehensive experimentation with real and synthetic datasets showcase our efficiency, scalability, and accuracy claims.\",\"PeriodicalId\":20536,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2623330.2623615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

众所周知,在大数据环境中解决具有小估计误差的缺失值(MV)问题是一项耗费资源的任务。随着数据集及其用户社区的不断增长,这个问题只会加剧。假设有可能有一台机器(“哥斯拉”),它可以存储大量数据集并支持不断增长的社区提交MV插入请求。是否有可能通过使用大量队列机器来取代Godzilla,以便更快地执行推算,并行地参与队列,每个队列访问原始数据集的更小分区?如果是这样,出于明显的性能原因,最好是每个imputation只访问所有队列的一个子集。在这种情况下,我们能否迅速决定哪一个是每个imputation所需的队列子集?但效率和可扩展性只是一个关键问题!在保证与哥斯拉的估算误差相当甚至更好的情况下,是否有可能做到以上这些?在本文中,我们得出了这些基本问题的答案,并开发了原则性的方法和框架,这些方法和框架提供了较大的性能加速和更好的或与哥斯拉相当的误差,而与使用的缺失值插入算法无关。我们的贡献涉及Pythia,这是一个框架和算法,用于提供上述问题的答案,并用于每个MV imputation请求参与适当的队列子集。Pythia功能基于两个支柱:(i)数据集(分区)签名,每个队列一个;(ii)相似性概念和算法,可以识别要参与的队列的适当子集。对真实和合成数据集的全面实验展示了我们的效率、可扩展性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling out big data missing value imputations: pythia vs. godzilla
Solving the missing-value (MV) problem with small estimation errors in big data environments is a notoriously resource-demanding task. As datasets and their user community continuously grow, the problem can only be exacerbated. Assume that it is possible to have a single machine (`Godzilla'), which can store the massive dataset and support an ever-growing community submitting MV imputation requests. Is it possible to replace Godzilla by employing a large number of cohort machines so that imputations can be performed much faster, engaging cohorts in parallel, each of which accesses much smaller partitions of the original dataset? If so, it would be preferable for obvious performance reasons to access only a subset of all cohorts per imputation. In this case, can we decide swiftly which is the desired subset of cohorts to engage per imputation? But efficiency and scalability is just one key concern! Is it possible to do the above while ensuring comparable or even better than Godzilla's imputation estimation errors? In this paper we derive answers to these fundamentals questions and develop principled methods and a framework which offer large performance speed-ups and better, or comparable, errors to that of Godzilla, independently of which missing-value imputation algorithm is used. Our contributions involve Pythia, a framework and algorithms for providing the answers to the above questions and for engaging the appropriate subset of cohorts per MV imputation request. Pythia functionality rests on two pillars: (i) dataset (partition) signatures, one per cohort, and (ii) similarity notions and algorithms, which can identify the appropriate subset of cohorts to engage. Comprehensive experimentation with real and synthetic datasets showcase our efficiency, scalability, and accuracy claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1