{"title":"回流离子-浓度-极化系统中的离子输运","authors":"","doi":"10.51316/jst.164.etsd.2023.33.1.4","DOIUrl":null,"url":null,"abstract":"The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.","PeriodicalId":17641,"journal":{"name":"JST: Engineering and Technology for Sustainable Development","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion Transport in the Return Flow Ion-Concentration-Polarization System\",\"authors\":\"\",\"doi\":\"10.51316/jst.164.etsd.2023.33.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.\",\"PeriodicalId\":17641,\"journal\":{\"name\":\"JST: Engineering and Technology for Sustainable Development\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JST: Engineering and Technology for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jst.164.etsd.2023.33.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JST: Engineering and Technology for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jst.164.etsd.2023.33.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ion Transport in the Return Flow Ion-Concentration-Polarization System
The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.