{"title":"用因果推理推断视频中的隐藏状态和动作","authors":"A. Fire, Song-Chun Zhu","doi":"10.1109/CVPRW.2017.13","DOIUrl":null,"url":null,"abstract":"In the physical world, cause and effect are inseparable: ambient conditions trigger humans to perform actions, thereby driving status changes of objects. In video, these actions and statuses may be hidden due to ambiguity, occlusion, or because they are otherwise unobservable, but humans nevertheless perceive them. In this paper, we extend the Causal And-Or Graph (C-AOG) to a sequential model representing actions and their effects on objects over time, and we build a probability model for it. For inference, we apply a Viterbi algorithm, grounded on probabilistic detections from video, to fill in hidden and misdetected actions and statuses. We analyze our method on a new video dataset that showcases causes and effects. Our results demonstrate the effectiveness of reasoning with causality over time.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"52 1","pages":"48-56"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Inferring Hidden Statuses and Actions in Video by Causal Reasoning\",\"authors\":\"A. Fire, Song-Chun Zhu\",\"doi\":\"10.1109/CVPRW.2017.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the physical world, cause and effect are inseparable: ambient conditions trigger humans to perform actions, thereby driving status changes of objects. In video, these actions and statuses may be hidden due to ambiguity, occlusion, or because they are otherwise unobservable, but humans nevertheless perceive them. In this paper, we extend the Causal And-Or Graph (C-AOG) to a sequential model representing actions and their effects on objects over time, and we build a probability model for it. For inference, we apply a Viterbi algorithm, grounded on probabilistic detections from video, to fill in hidden and misdetected actions and statuses. We analyze our method on a new video dataset that showcases causes and effects. Our results demonstrate the effectiveness of reasoning with causality over time.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"52 1\",\"pages\":\"48-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferring Hidden Statuses and Actions in Video by Causal Reasoning
In the physical world, cause and effect are inseparable: ambient conditions trigger humans to perform actions, thereby driving status changes of objects. In video, these actions and statuses may be hidden due to ambiguity, occlusion, or because they are otherwise unobservable, but humans nevertheless perceive them. In this paper, we extend the Causal And-Or Graph (C-AOG) to a sequential model representing actions and their effects on objects over time, and we build a probability model for it. For inference, we apply a Viterbi algorithm, grounded on probabilistic detections from video, to fill in hidden and misdetected actions and statuses. We analyze our method on a new video dataset that showcases causes and effects. Our results demonstrate the effectiveness of reasoning with causality over time.