{"title":"协同过滤推荐系统冷启动问题的跨模态预热解决方案","authors":"B. Abdollahi, O. Nasraoui","doi":"10.1145/2615569.2615665","DOIUrl":null,"url":null,"abstract":"We present a cross-modal recommendation engine that leverages multiple domains of data while performing matrix factorization. We show how our approach has the potential to alleviate the cold-start problem for new items, one of the notorious limitations of Collaborative Filtering (CF) techniques.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"69 1","pages":"257-258"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A cross-modal warm-up solution for the cold-start problem in collaborative filtering recommender systems\",\"authors\":\"B. Abdollahi, O. Nasraoui\",\"doi\":\"10.1145/2615569.2615665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a cross-modal recommendation engine that leverages multiple domains of data while performing matrix factorization. We show how our approach has the potential to alleviate the cold-start problem for new items, one of the notorious limitations of Collaborative Filtering (CF) techniques.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"69 1\",\"pages\":\"257-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2615569.2615665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2615569.2615665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cross-modal warm-up solution for the cold-start problem in collaborative filtering recommender systems
We present a cross-modal recommendation engine that leverages multiple domains of data while performing matrix factorization. We show how our approach has the potential to alleviate the cold-start problem for new items, one of the notorious limitations of Collaborative Filtering (CF) techniques.