Zixin Yang, Richard Simon, Yangming Li, Cristian A Linte
{"title":"使用无监督光学流方法从立体内窥镜视频中估计密集深度","authors":"Zixin Yang, Richard Simon, Yangming Li, Cristian A Linte","doi":"10.1007/978-3-030-80432-9_26","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of Minimally Invasive Surgery, estimating depth from stereo endoscopy plays a crucial role in three-dimensional (3D) reconstruction, surgical navigation, and augmentation reality (AR) visualization. However, the challenges associated with this task are three-fold: 1) feature-less surface representations, often polluted by artifacts, pose difficulty in identifying correspondence; 2) ground truth depth is difficult to estimate; and 3) an endoscopy image acquisition accompanied by accurately calibrated camera parameters is rare, as the camera is often adjusted during an intervention. To address these difficulties, we propose an unsupervised depth estimation framework (END-flow) based on an unsupervised optical flow network trained on un-rectified binocular videos without calibrated camera parameters. The proposed END-flow architecture is compared with traditional stereo matching, self-supervised depth estimation, unsupervised optical flow, and supervised methods implemented on the Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) Challenge dataset. Experimental results show that our method outperforms several state-of-the-art techniques and achieves a close performance to that of supervised methods.</p>","PeriodicalId":93336,"journal":{"name":"Medical image understanding and analysis : 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12-14, 2021, Proceedings. Medical Image Understanding and Analysis (Conference) (25th : 2021 : Online)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dense Depth Estimation from Stereo Endoscopy Videos Using Unsupervised Optical Flow Methods.\",\"authors\":\"Zixin Yang, Richard Simon, Yangming Li, Cristian A Linte\",\"doi\":\"10.1007/978-3-030-80432-9_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the context of Minimally Invasive Surgery, estimating depth from stereo endoscopy plays a crucial role in three-dimensional (3D) reconstruction, surgical navigation, and augmentation reality (AR) visualization. However, the challenges associated with this task are three-fold: 1) feature-less surface representations, often polluted by artifacts, pose difficulty in identifying correspondence; 2) ground truth depth is difficult to estimate; and 3) an endoscopy image acquisition accompanied by accurately calibrated camera parameters is rare, as the camera is often adjusted during an intervention. To address these difficulties, we propose an unsupervised depth estimation framework (END-flow) based on an unsupervised optical flow network trained on un-rectified binocular videos without calibrated camera parameters. The proposed END-flow architecture is compared with traditional stereo matching, self-supervised depth estimation, unsupervised optical flow, and supervised methods implemented on the Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) Challenge dataset. Experimental results show that our method outperforms several state-of-the-art techniques and achieves a close performance to that of supervised methods.</p>\",\"PeriodicalId\":93336,\"journal\":{\"name\":\"Medical image understanding and analysis : 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12-14, 2021, Proceedings. Medical Image Understanding and Analysis (Conference) (25th : 2021 : Online)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image understanding and analysis : 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12-14, 2021, Proceedings. Medical Image Understanding and Analysis (Conference) (25th : 2021 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-80432-9_26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image understanding and analysis : 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12-14, 2021, Proceedings. Medical Image Understanding and Analysis (Conference) (25th : 2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-80432-9_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Dense Depth Estimation from Stereo Endoscopy Videos Using Unsupervised Optical Flow Methods.
In the context of Minimally Invasive Surgery, estimating depth from stereo endoscopy plays a crucial role in three-dimensional (3D) reconstruction, surgical navigation, and augmentation reality (AR) visualization. However, the challenges associated with this task are three-fold: 1) feature-less surface representations, often polluted by artifacts, pose difficulty in identifying correspondence; 2) ground truth depth is difficult to estimate; and 3) an endoscopy image acquisition accompanied by accurately calibrated camera parameters is rare, as the camera is often adjusted during an intervention. To address these difficulties, we propose an unsupervised depth estimation framework (END-flow) based on an unsupervised optical flow network trained on un-rectified binocular videos without calibrated camera parameters. The proposed END-flow architecture is compared with traditional stereo matching, self-supervised depth estimation, unsupervised optical flow, and supervised methods implemented on the Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) Challenge dataset. Experimental results show that our method outperforms several state-of-the-art techniques and achieves a close performance to that of supervised methods.