{"title":"三维拓扑模型和heegard分裂。2庞特里亚金对偶和可观测物","authors":"F. Thuillier","doi":"10.1063/5.0027779","DOIUrl":null,"url":null,"abstract":"In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L \\cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^\\star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D topological models and Heegaard splitting. II. Pontryagin duality and observables\",\"authors\":\"F. Thuillier\",\"doi\":\"10.1063/5.0027779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L \\\\cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^\\\\star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0027779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0027779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D topological models and Heegaard splitting. II. Pontryagin duality and observables
In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L \cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^\star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.