{"title":"磨料水射流加工纤维乙烯基酯复合材料的试验研究","authors":"Puneet Kumar, B. Tank, R. Kant","doi":"10.37255/jme.v4i3pp134-138","DOIUrl":null,"url":null,"abstract":"Abrasive water jet machining (AWJM) is one of the most developed non-traditional\nmachining processes. It is generally used to cut difficult to cut materials like composites. The present study is focused on machining of carbon fiber vinyl ester composite with AWJM. The effect of process parameters namely water pressure, standoff distance and traverse speed on surface roughness and kerf tapper is studied. Design of experiment is done by using Taguchi L16 orthogonal array. It is observed that water pressure is the most significant parameter followed by traverse speed. It is found that with the increase in water pressure and decrease in traverse speed of AWJM, surface roughness and kerf tapper of machined samples decreases.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EXPERIMENTAL INVESTIGATION ON ABRASIVE WATERJET MACHINING OF FIBRE VINYL ESTER\\nCOMPOSITE\",\"authors\":\"Puneet Kumar, B. Tank, R. Kant\",\"doi\":\"10.37255/jme.v4i3pp134-138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abrasive water jet machining (AWJM) is one of the most developed non-traditional\\nmachining processes. It is generally used to cut difficult to cut materials like composites. The present study is focused on machining of carbon fiber vinyl ester composite with AWJM. The effect of process parameters namely water pressure, standoff distance and traverse speed on surface roughness and kerf tapper is studied. Design of experiment is done by using Taguchi L16 orthogonal array. It is observed that water pressure is the most significant parameter followed by traverse speed. It is found that with the increase in water pressure and decrease in traverse speed of AWJM, surface roughness and kerf tapper of machined samples decreases.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v4i3pp134-138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v4i3pp134-138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
EXPERIMENTAL INVESTIGATION ON ABRASIVE WATERJET MACHINING OF FIBRE VINYL ESTER
COMPOSITE
Abrasive water jet machining (AWJM) is one of the most developed non-traditional
machining processes. It is generally used to cut difficult to cut materials like composites. The present study is focused on machining of carbon fiber vinyl ester composite with AWJM. The effect of process parameters namely water pressure, standoff distance and traverse speed on surface roughness and kerf tapper is studied. Design of experiment is done by using Taguchi L16 orthogonal array. It is observed that water pressure is the most significant parameter followed by traverse speed. It is found that with the increase in water pressure and decrease in traverse speed of AWJM, surface roughness and kerf tapper of machined samples decreases.