基于空间正则化和自适应距离度量的证据聚类算法在FDG-PET图像中的肿瘤描绘

C. Lian, S. Ruan, T. Denoeux, Hua Li, P. Vera
{"title":"基于空间正则化和自适应距离度量的证据聚类算法在FDG-PET图像中的肿瘤描绘","authors":"C. Lian, S. Ruan, T. Denoeux, Hua Li, P. Vera","doi":"10.1109/ISBI.2017.7950726","DOIUrl":null,"url":null,"abstract":"While accurate tumor delineation in FDG-PET is a vital task, noisy and blurring imaging system makes it a challenging work. In this paper, we propose to address this issue using the theory of belief functions, a powerful tool for modeling and reasoning with uncertain and/or imprecise information. An automatic segmentation method based on clustering is developed in 3-D, where, different from available methods, PET voxels are described not only by intensities but also complementally by features extracted from patches. Considering there are a large amount of features without consensus regarding the most informative ones, and some of them are even unreliable due to image quality, a specific procedure is adopted to adapt distance metric for properly representing clustering distortions and neighborhood similarities. A specific spatial regularization is also included in the clustering algorithm to effectively quantify local homogeneity. The proposed method has been evaluated by real-patient images, showing good performance.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"21 1","pages":"1177-1180"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive distance metric\",\"authors\":\"C. Lian, S. Ruan, T. Denoeux, Hua Li, P. Vera\",\"doi\":\"10.1109/ISBI.2017.7950726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While accurate tumor delineation in FDG-PET is a vital task, noisy and blurring imaging system makes it a challenging work. In this paper, we propose to address this issue using the theory of belief functions, a powerful tool for modeling and reasoning with uncertain and/or imprecise information. An automatic segmentation method based on clustering is developed in 3-D, where, different from available methods, PET voxels are described not only by intensities but also complementally by features extracted from patches. Considering there are a large amount of features without consensus regarding the most informative ones, and some of them are even unreliable due to image quality, a specific procedure is adopted to adapt distance metric for properly representing clustering distortions and neighborhood similarities. A specific spatial regularization is also included in the clustering algorithm to effectively quantify local homogeneity. The proposed method has been evaluated by real-patient images, showing good performance.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"21 1\",\"pages\":\"1177-1180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然FDG-PET的准确肿瘤描绘是一项至关重要的任务,但噪声和模糊成像系统使其成为一项具有挑战性的工作。在本文中,我们建议使用信念函数理论来解决这个问题,信念函数理论是一个强大的工具,用于不确定和/或不精确信息的建模和推理。本文提出了一种基于聚类的三维图像自动分割方法,与现有方法不同的是,PET体素不仅可以通过强度来描述,还可以通过从patch中提取的特征来补充描述。考虑到大量的特征对于信息量最大的特征没有共识,其中一些特征由于图像质量的原因甚至是不可靠的,采用了一个特定的过程来适应距离度量,以适当地表示聚类失真和邻域相似度。在聚类算法中加入了特定的空间正则化,有效地量化了局部均匀性。该方法经实际患者图像验证,效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive distance metric
While accurate tumor delineation in FDG-PET is a vital task, noisy and blurring imaging system makes it a challenging work. In this paper, we propose to address this issue using the theory of belief functions, a powerful tool for modeling and reasoning with uncertain and/or imprecise information. An automatic segmentation method based on clustering is developed in 3-D, where, different from available methods, PET voxels are described not only by intensities but also complementally by features extracted from patches. Considering there are a large amount of features without consensus regarding the most informative ones, and some of them are even unreliable due to image quality, a specific procedure is adopted to adapt distance metric for properly representing clustering distortions and neighborhood similarities. A specific spatial regularization is also included in the clustering algorithm to effectively quantify local homogeneity. The proposed method has been evaluated by real-patient images, showing good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1