搜索、对齐和修复:用于介绍性编程练习的数据驱动反馈生成

Ke Wang, Rishabh Singh, Z. Su
{"title":"搜索、对齐和修复:用于介绍性编程练习的数据驱动反馈生成","authors":"Ke Wang, Rishabh Singh, Z. Su","doi":"10.1145/3192366.3192384","DOIUrl":null,"url":null,"abstract":"This paper introduces the “Search, Align, and Repair” data-driven program repair framework to automate feedback generation for introductory programming exercises. Distinct from existing techniques, our goal is to develop an efficient, fully automated, and problem-agnostic technique for large or MOOC-scale introductory programming courses. We leverage the large amount of available student submissions in such settings and develop new algorithms for identifying similar programs, aligning correct and incorrect programs, and repairing incorrect programs by finding minimal fixes. We have implemented our technique in the Sarfgen system and evaluated it on thousands of real student attempts from the Microsoft-DEV204.1x edX course and the Microsoft CodeHunt platform. Our results show that Sarfgen can, within two seconds on average, generate concise, useful feedback for 89.7% of the incorrect student submissions. It has been integrated with the Microsoft-DEV204.1X edX class and deployed for production use.","PeriodicalId":20583,"journal":{"name":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Search, align, and repair: data-driven feedback generation for introductory programming exercises\",\"authors\":\"Ke Wang, Rishabh Singh, Z. Su\",\"doi\":\"10.1145/3192366.3192384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the “Search, Align, and Repair” data-driven program repair framework to automate feedback generation for introductory programming exercises. Distinct from existing techniques, our goal is to develop an efficient, fully automated, and problem-agnostic technique for large or MOOC-scale introductory programming courses. We leverage the large amount of available student submissions in such settings and develop new algorithms for identifying similar programs, aligning correct and incorrect programs, and repairing incorrect programs by finding minimal fixes. We have implemented our technique in the Sarfgen system and evaluated it on thousands of real student attempts from the Microsoft-DEV204.1x edX course and the Microsoft CodeHunt platform. Our results show that Sarfgen can, within two seconds on average, generate concise, useful feedback for 89.7% of the incorrect student submissions. It has been integrated with the Microsoft-DEV204.1X edX class and deployed for production use.\",\"PeriodicalId\":20583,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3192366.3192384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3192366.3192384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

本文介绍了“搜索、对齐和修复”数据驱动的程序修复框架,用于自动生成介绍性编程练习的反馈。与现有技术不同,我们的目标是为大型或mooc规模的入门编程课程开发一种高效、全自动和问题不可知的技术。我们利用大量可用的学生提交在这样的设置和开发新的算法来识别类似的程序,对齐正确和不正确的程序,并通过寻找最小的修复修复不正确的程序。我们已经在Sarfgen系统中实现了我们的技术,并对来自Microsoft- dev204.1 x edX课程和Microsoft CodeHunt平台的数千次真实学生尝试进行了评估。我们的结果表明,Sarfgen平均可以在两秒钟内为89.7%的错误学生提交生成简洁、有用的反馈。它已经与Microsoft-DEV204.1X edX类集成,并部署到生产环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Search, align, and repair: data-driven feedback generation for introductory programming exercises
This paper introduces the “Search, Align, and Repair” data-driven program repair framework to automate feedback generation for introductory programming exercises. Distinct from existing techniques, our goal is to develop an efficient, fully automated, and problem-agnostic technique for large or MOOC-scale introductory programming courses. We leverage the large amount of available student submissions in such settings and develop new algorithms for identifying similar programs, aligning correct and incorrect programs, and repairing incorrect programs by finding minimal fixes. We have implemented our technique in the Sarfgen system and evaluated it on thousands of real student attempts from the Microsoft-DEV204.1x edX course and the Microsoft CodeHunt platform. Our results show that Sarfgen can, within two seconds on average, generate concise, useful feedback for 89.7% of the incorrect student submissions. It has been integrated with the Microsoft-DEV204.1X edX class and deployed for production use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Partial control-flow linearization Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation Bayonet: probabilistic inference for networks Advanced automata-based algorithms for program termination checking Guarded impredicative polymorphism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1