{"title":"瓜尔豆(Cyamopsis tetragonoloba)种子萌发与温度的关系","authors":"Seyyed Hamid Reza Ramazani, Fariba Armoon, Behdani","doi":"10.52547/yujs.7.2.121","DOIUrl":null,"url":null,"abstract":"investigate the effect of on germination traits and early seedling growth and predict the cardinal temperatures (minimum, and maximum) of germination in a randomized with 8 levels of temperature treatments 10, 15, 20, 25, 30, 35, and 40°C), with 5 replications. Germination percentage, daily germination speed, mean daily germination, plumule length, root length, and seedling length Cardinal temperatures of germination calculated using regression analysis with the aid of the proposed models (logistic, two-way, quadratic, and third-order polynomials) using germination speed. The data were analyzed using SAS software and the comparison means were done by Duncan's test at a probability level of 5%. Sigma Plot software was used to plot the germination rate against temperature graphs (for fitting different models). Results: The results showed that the effect of different temperature levels on the percentage, speed and mean seed germination was significant (P <0.05). According to the results, the lowest values for percentage, speed, and average germination were obtained at 5, 10, and 40°C, and the highest germination speed was observed at 15 °C and also the highest percentage of germination and average germination was observed at 35°C. The results of the effect of different temperature levels on seedling growth showed that the effect of temperature on the seedling length, stem, and root length was significant (P <0.01), so that the lowest values related to seedling length, plumule and radicle was found at 5, 10 and 40°C, and the maximum seedling and plumule length were 30°C. Conclusion: Quantification of the gauge seed germination reaction to different temperature levels was carried out using four dual-functions, logistic, quadratic and triple polynomials. The second-order multitasking regression model, based on the coefficient of explanation (R 2 ) and the amount of deviation, had a suitable and significant fit with the data related to germination rate against the independent temperature variable. Based on the parameters of the model, the optimum temperature was obtained at 26.05°C and the minimum and maximum temperature of guar germination were calculated to be 6.09 and 40°C.","PeriodicalId":14578,"journal":{"name":"Iranian Journal of Seed Research","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Guar (Cyamopsis tetragonoloba) Seed Germination Relative to Temperature\",\"authors\":\"Seyyed Hamid Reza Ramazani, Fariba Armoon, Behdani\",\"doi\":\"10.52547/yujs.7.2.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"investigate the effect of on germination traits and early seedling growth and predict the cardinal temperatures (minimum, and maximum) of germination in a randomized with 8 levels of temperature treatments 10, 15, 20, 25, 30, 35, and 40°C), with 5 replications. Germination percentage, daily germination speed, mean daily germination, plumule length, root length, and seedling length Cardinal temperatures of germination calculated using regression analysis with the aid of the proposed models (logistic, two-way, quadratic, and third-order polynomials) using germination speed. The data were analyzed using SAS software and the comparison means were done by Duncan's test at a probability level of 5%. Sigma Plot software was used to plot the germination rate against temperature graphs (for fitting different models). Results: The results showed that the effect of different temperature levels on the percentage, speed and mean seed germination was significant (P <0.05). According to the results, the lowest values for percentage, speed, and average germination were obtained at 5, 10, and 40°C, and the highest germination speed was observed at 15 °C and also the highest percentage of germination and average germination was observed at 35°C. The results of the effect of different temperature levels on seedling growth showed that the effect of temperature on the seedling length, stem, and root length was significant (P <0.01), so that the lowest values related to seedling length, plumule and radicle was found at 5, 10 and 40°C, and the maximum seedling and plumule length were 30°C. Conclusion: Quantification of the gauge seed germination reaction to different temperature levels was carried out using four dual-functions, logistic, quadratic and triple polynomials. The second-order multitasking regression model, based on the coefficient of explanation (R 2 ) and the amount of deviation, had a suitable and significant fit with the data related to germination rate against the independent temperature variable. Based on the parameters of the model, the optimum temperature was obtained at 26.05°C and the minimum and maximum temperature of guar germination were calculated to be 6.09 and 40°C.\",\"PeriodicalId\":14578,\"journal\":{\"name\":\"Iranian Journal of Seed Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Seed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/yujs.7.2.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Seed Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/yujs.7.2.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying Guar (Cyamopsis tetragonoloba) Seed Germination Relative to Temperature
investigate the effect of on germination traits and early seedling growth and predict the cardinal temperatures (minimum, and maximum) of germination in a randomized with 8 levels of temperature treatments 10, 15, 20, 25, 30, 35, and 40°C), with 5 replications. Germination percentage, daily germination speed, mean daily germination, plumule length, root length, and seedling length Cardinal temperatures of germination calculated using regression analysis with the aid of the proposed models (logistic, two-way, quadratic, and third-order polynomials) using germination speed. The data were analyzed using SAS software and the comparison means were done by Duncan's test at a probability level of 5%. Sigma Plot software was used to plot the germination rate against temperature graphs (for fitting different models). Results: The results showed that the effect of different temperature levels on the percentage, speed and mean seed germination was significant (P <0.05). According to the results, the lowest values for percentage, speed, and average germination were obtained at 5, 10, and 40°C, and the highest germination speed was observed at 15 °C and also the highest percentage of germination and average germination was observed at 35°C. The results of the effect of different temperature levels on seedling growth showed that the effect of temperature on the seedling length, stem, and root length was significant (P <0.01), so that the lowest values related to seedling length, plumule and radicle was found at 5, 10 and 40°C, and the maximum seedling and plumule length were 30°C. Conclusion: Quantification of the gauge seed germination reaction to different temperature levels was carried out using four dual-functions, logistic, quadratic and triple polynomials. The second-order multitasking regression model, based on the coefficient of explanation (R 2 ) and the amount of deviation, had a suitable and significant fit with the data related to germination rate against the independent temperature variable. Based on the parameters of the model, the optimum temperature was obtained at 26.05°C and the minimum and maximum temperature of guar germination were calculated to be 6.09 and 40°C.