J. Kamioka, Yoshifumi Kawamura, Ryota Komaru, M. Hangai, Y. Kamo, Tetsuo Kodera, S. Shinjo
{"title":"用于低成本20W T/R模块的x波段GaN芯片组","authors":"J. Kamioka, Yoshifumi Kawamura, Ryota Komaru, M. Hangai, Y. Kamo, Tetsuo Kodera, S. Shinjo","doi":"10.1587/transele.2021ecp5024","DOIUrl":null,"url":null,"abstract":"SUMMARY This paper reports on X-band Gallium Nitride (GaN) chipsets for cost-e ff ective 20W transmit-receive (T / R) modules. The chipset components include a GaN-on-Si monolithic microwave integrated circuit (MMIC) driver amplifier (DA), a GaN-on-SiC high power ampli-fier (HPA) with GaAs matching circuits, a high-gain GaN-on-Si HPA with a GaAs output matching circuit, and a GaN-on-Si MMIC switch (SW). By utilizing either combination of the DA or single high-gain HPA, the configurations of two T / R module types can be realized. The GaN-on-Si MMIC DA demonstrates an output power of 6.4–7.4W, an associate gain of 22.3–24.6dB and a power added e ffi ciency (PAE) of 32–36% over 9.0– 11.0GHz. A GaN-on-SiC HPA with GaAs matching circuits exhibited an output power of 20–28W, associate gain of 7.8–10.7dB, and a PAE of 40– 56% over 9.0–11.0GHz. The high-gain GaN-on-Si HPA with a GaAs output matching circuit exhibits an output power of 15–30W, associate gain of 27–30dB, and PAE of 26–33% over 9.0–11.0GHz. The GaN-on-Si MMIC switch demonstrates insertion losses of 1.1–1.3dB and isolation of 10.1– 14.7dB over 8.0–11.5GHz. By employing cost-e ff ective circuit configu-rations, the costs of these chipsets are estimated to be about half that of conventional chipsets","PeriodicalId":13259,"journal":{"name":"IEICE Trans. Electron.","volume":"44 1","pages":"194-202"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-Band GaN Chipsets for Cost-Effective 20W T/R Modules\",\"authors\":\"J. Kamioka, Yoshifumi Kawamura, Ryota Komaru, M. Hangai, Y. Kamo, Tetsuo Kodera, S. Shinjo\",\"doi\":\"10.1587/transele.2021ecp5024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY This paper reports on X-band Gallium Nitride (GaN) chipsets for cost-e ff ective 20W transmit-receive (T / R) modules. The chipset components include a GaN-on-Si monolithic microwave integrated circuit (MMIC) driver amplifier (DA), a GaN-on-SiC high power ampli-fier (HPA) with GaAs matching circuits, a high-gain GaN-on-Si HPA with a GaAs output matching circuit, and a GaN-on-Si MMIC switch (SW). By utilizing either combination of the DA or single high-gain HPA, the configurations of two T / R module types can be realized. The GaN-on-Si MMIC DA demonstrates an output power of 6.4–7.4W, an associate gain of 22.3–24.6dB and a power added e ffi ciency (PAE) of 32–36% over 9.0– 11.0GHz. A GaN-on-SiC HPA with GaAs matching circuits exhibited an output power of 20–28W, associate gain of 7.8–10.7dB, and a PAE of 40– 56% over 9.0–11.0GHz. The high-gain GaN-on-Si HPA with a GaAs output matching circuit exhibits an output power of 15–30W, associate gain of 27–30dB, and PAE of 26–33% over 9.0–11.0GHz. The GaN-on-Si MMIC switch demonstrates insertion losses of 1.1–1.3dB and isolation of 10.1– 14.7dB over 8.0–11.5GHz. By employing cost-e ff ective circuit configu-rations, the costs of these chipsets are estimated to be about half that of conventional chipsets\",\"PeriodicalId\":13259,\"journal\":{\"name\":\"IEICE Trans. Electron.\",\"volume\":\"44 1\",\"pages\":\"194-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Trans. Electron.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transele.2021ecp5024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Electron.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transele.2021ecp5024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
X-Band GaN Chipsets for Cost-Effective 20W T/R Modules
SUMMARY This paper reports on X-band Gallium Nitride (GaN) chipsets for cost-e ff ective 20W transmit-receive (T / R) modules. The chipset components include a GaN-on-Si monolithic microwave integrated circuit (MMIC) driver amplifier (DA), a GaN-on-SiC high power ampli-fier (HPA) with GaAs matching circuits, a high-gain GaN-on-Si HPA with a GaAs output matching circuit, and a GaN-on-Si MMIC switch (SW). By utilizing either combination of the DA or single high-gain HPA, the configurations of two T / R module types can be realized. The GaN-on-Si MMIC DA demonstrates an output power of 6.4–7.4W, an associate gain of 22.3–24.6dB and a power added e ffi ciency (PAE) of 32–36% over 9.0– 11.0GHz. A GaN-on-SiC HPA with GaAs matching circuits exhibited an output power of 20–28W, associate gain of 7.8–10.7dB, and a PAE of 40– 56% over 9.0–11.0GHz. The high-gain GaN-on-Si HPA with a GaAs output matching circuit exhibits an output power of 15–30W, associate gain of 27–30dB, and PAE of 26–33% over 9.0–11.0GHz. The GaN-on-Si MMIC switch demonstrates insertion losses of 1.1–1.3dB and isolation of 10.1– 14.7dB over 8.0–11.5GHz. By employing cost-e ff ective circuit configu-rations, the costs of these chipsets are estimated to be about half that of conventional chipsets