从临床工作流程中的标准二维放射注释中提取体积信息

Sharmili Roy, M. S. Brown, G. Shih
{"title":"从临床工作流程中的标准二维放射注释中提取体积信息","authors":"Sharmili Roy, M. S. Brown, G. Shih","doi":"10.1109/BIBMW.2012.6470226","DOIUrl":null,"url":null,"abstract":"In a typical radiological reporting workflow, radiologists make image-based annotations to denote regions of clinical significance or to perform quantitative measurements. Interestingly, virtually all annotation software allow only 2D geometric primitives such as line segments and ellipses; 3D volume annotation is not supported. As a result, when dealing with anatomic entities that have volumetric properties (e.g. tumors, organs), a radiologist must summarize volumetric quantities in a written text-report or use a third party software outside the standard workflow to perform volumetric segmentation. In this paper, we describe an automated method to extract volumes from radiological annotations. Specifically, we describe a clustering method that parses the annotations of unconnected line segments to determine the locations of volumes. We show how this extracted information can be used to bootstrap and accelerate subsequent 3D segmentation while avoiding the need to perform redundant markup or segmentation seeding outside the standard radiological workflow. This 3D data can be utilized to enhance important clinical applications such as radiological reporting, exam summarization and visualization.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting volumetric information from standard two-dimensional radiological annotations within the clinical workflow\",\"authors\":\"Sharmili Roy, M. S. Brown, G. Shih\",\"doi\":\"10.1109/BIBMW.2012.6470226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a typical radiological reporting workflow, radiologists make image-based annotations to denote regions of clinical significance or to perform quantitative measurements. Interestingly, virtually all annotation software allow only 2D geometric primitives such as line segments and ellipses; 3D volume annotation is not supported. As a result, when dealing with anatomic entities that have volumetric properties (e.g. tumors, organs), a radiologist must summarize volumetric quantities in a written text-report or use a third party software outside the standard workflow to perform volumetric segmentation. In this paper, we describe an automated method to extract volumes from radiological annotations. Specifically, we describe a clustering method that parses the annotations of unconnected line segments to determine the locations of volumes. We show how this extracted information can be used to bootstrap and accelerate subsequent 3D segmentation while avoiding the need to perform redundant markup or segmentation seeding outside the standard radiological workflow. This 3D data can be utilized to enhance important clinical applications such as radiological reporting, exam summarization and visualization.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在典型的放射报告工作流程中,放射科医生根据图像进行注释,以表示具有临床意义的区域或进行定量测量。有趣的是,几乎所有的注释软件只允许二维几何原语,如线段和椭圆;不支持3D体标注。因此,当处理具有体积属性的解剖实体(例如肿瘤、器官)时,放射科医生必须在书面文本报告中总结体积数量,或者使用标准工作流程之外的第三方软件来执行体积分割。在本文中,我们描述了一种自动从放射性注释中提取体积的方法。具体来说,我们描述了一种聚类方法,该方法通过分析未连接线段的注释来确定卷的位置。我们展示了如何使用这些提取的信息来引导和加速随后的3D分割,同时避免了在标准放射工作流程之外执行冗余标记或分割播种的需要。这些3D数据可用于增强重要的临床应用,如放射报告、检查总结和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting volumetric information from standard two-dimensional radiological annotations within the clinical workflow
In a typical radiological reporting workflow, radiologists make image-based annotations to denote regions of clinical significance or to perform quantitative measurements. Interestingly, virtually all annotation software allow only 2D geometric primitives such as line segments and ellipses; 3D volume annotation is not supported. As a result, when dealing with anatomic entities that have volumetric properties (e.g. tumors, organs), a radiologist must summarize volumetric quantities in a written text-report or use a third party software outside the standard workflow to perform volumetric segmentation. In this paper, we describe an automated method to extract volumes from radiological annotations. Specifically, we describe a clustering method that parses the annotations of unconnected line segments to determine the locations of volumes. We show how this extracted information can be used to bootstrap and accelerate subsequent 3D segmentation while avoiding the need to perform redundant markup or segmentation seeding outside the standard radiological workflow. This 3D data can be utilized to enhance important clinical applications such as radiological reporting, exam summarization and visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1