{"title":"基于调幅分析的信噪比估计及其在噪声抑制中的应用","authors":"J. Tchorz, B. Kollmeier","doi":"10.1109/TSA.2003.811542","DOIUrl":null,"url":null,"abstract":"A single-microphone noise suppression algorithm is described that is based on a novel approach for the estimation of the signal-to-noise ratio (SNR) in different frequency channels: The input signal is transformed into neurophysiologically-motivated spectro-temporal input features. These patterns are called amplitude modulation spectrograms (AMS), as they contain information of both center frequencies and modulation frequencies within each 32 ms-analysis frame. The different representations of speech and noise in AMS patterns are detected by a neural network, which estimates the present SNR in each frequency channel. Quantitative experiments show a reliable estimation of the SNR for most types of nonspeech background noise. For noise suppression, the frequency bands are attenuated according to the estimated present SNR using a Wiener filter approach. Objective speech quality measures, informal listening tests, and the results of automatic speech recognition experiments indicate a substantial benefit from AMS-based noise suppression, in comparison to unprocessed noisy speech.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"1 1","pages":"184-192"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"SNR estimation based on amplitude modulation analysis with applications to noise suppression\",\"authors\":\"J. Tchorz, B. Kollmeier\",\"doi\":\"10.1109/TSA.2003.811542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-microphone noise suppression algorithm is described that is based on a novel approach for the estimation of the signal-to-noise ratio (SNR) in different frequency channels: The input signal is transformed into neurophysiologically-motivated spectro-temporal input features. These patterns are called amplitude modulation spectrograms (AMS), as they contain information of both center frequencies and modulation frequencies within each 32 ms-analysis frame. The different representations of speech and noise in AMS patterns are detected by a neural network, which estimates the present SNR in each frequency channel. Quantitative experiments show a reliable estimation of the SNR for most types of nonspeech background noise. For noise suppression, the frequency bands are attenuated according to the estimated present SNR using a Wiener filter approach. Objective speech quality measures, informal listening tests, and the results of automatic speech recognition experiments indicate a substantial benefit from AMS-based noise suppression, in comparison to unprocessed noisy speech.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"1 1\",\"pages\":\"184-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.811542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.811542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SNR estimation based on amplitude modulation analysis with applications to noise suppression
A single-microphone noise suppression algorithm is described that is based on a novel approach for the estimation of the signal-to-noise ratio (SNR) in different frequency channels: The input signal is transformed into neurophysiologically-motivated spectro-temporal input features. These patterns are called amplitude modulation spectrograms (AMS), as they contain information of both center frequencies and modulation frequencies within each 32 ms-analysis frame. The different representations of speech and noise in AMS patterns are detected by a neural network, which estimates the present SNR in each frequency channel. Quantitative experiments show a reliable estimation of the SNR for most types of nonspeech background noise. For noise suppression, the frequency bands are attenuated according to the estimated present SNR using a Wiener filter approach. Objective speech quality measures, informal listening tests, and the results of automatic speech recognition experiments indicate a substantial benefit from AMS-based noise suppression, in comparison to unprocessed noisy speech.