Wenfeng Zhang, Ming K. Lim, Mei Yang, Xingzhi Li, Du Ni
{"title":"利用深度学习对供应链信用风险缺失数据进行时间序列插值","authors":"Wenfeng Zhang, Ming K. Lim, Mei Yang, Xingzhi Li, Du Ni","doi":"10.1108/imds-08-2022-0468","DOIUrl":null,"url":null,"abstract":"PurposeAs the supply chain is a highly integrated infrastructure in modern business, the risks in supply chain are also becoming highly contagious among the target company. This motivates researchers to continuously add new features to the datasets for the credit risk prediction (CRP). However, adding new features can easily lead to missing of the data.Design/methodology/approachBased on the gaps summarized from the literature in CRP, this study first introduces the approaches to the building of datasets and the framing of the algorithmic models. Then, this study tests the interpolation effects of the algorithmic model in three artificial datasets with different missing rates and compares its predictability before and after the interpolation in a real dataset with the missing data in irregular time-series.FindingsThe algorithmic model of the time-decayed long short-term memory (TD-LSTM) proposed in this study can monitor the missing data in irregular time-series by capturing more and better time-series information, and interpolating the missing data efficiently. Moreover, the algorithmic model of Deep Neural Network can be used in the CRP for the datasets with the missing data in irregular time-series after the interpolation by the TD-LSTM.Originality/valueThis study fully validates the TD-LSTM interpolation effects and demonstrates that the predictability of the dataset after interpolation is improved. Accurate and timely CRP can undoubtedly assist a target company in avoiding losses. Identifying credit risks and taking preventive measures ahead of time, especially in the case of public emergencies, can help the company minimize losses.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"18 1","pages":"1401-1417"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using deep learning to interpolate the missing data in time-series for credit risks along supply chain\",\"authors\":\"Wenfeng Zhang, Ming K. Lim, Mei Yang, Xingzhi Li, Du Ni\",\"doi\":\"10.1108/imds-08-2022-0468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeAs the supply chain is a highly integrated infrastructure in modern business, the risks in supply chain are also becoming highly contagious among the target company. This motivates researchers to continuously add new features to the datasets for the credit risk prediction (CRP). However, adding new features can easily lead to missing of the data.Design/methodology/approachBased on the gaps summarized from the literature in CRP, this study first introduces the approaches to the building of datasets and the framing of the algorithmic models. Then, this study tests the interpolation effects of the algorithmic model in three artificial datasets with different missing rates and compares its predictability before and after the interpolation in a real dataset with the missing data in irregular time-series.FindingsThe algorithmic model of the time-decayed long short-term memory (TD-LSTM) proposed in this study can monitor the missing data in irregular time-series by capturing more and better time-series information, and interpolating the missing data efficiently. Moreover, the algorithmic model of Deep Neural Network can be used in the CRP for the datasets with the missing data in irregular time-series after the interpolation by the TD-LSTM.Originality/valueThis study fully validates the TD-LSTM interpolation effects and demonstrates that the predictability of the dataset after interpolation is improved. Accurate and timely CRP can undoubtedly assist a target company in avoiding losses. Identifying credit risks and taking preventive measures ahead of time, especially in the case of public emergencies, can help the company minimize losses.\",\"PeriodicalId\":13427,\"journal\":{\"name\":\"Ind. Manag. Data Syst.\",\"volume\":\"18 1\",\"pages\":\"1401-1417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ind. Manag. Data Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-08-2022-0468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-08-2022-0468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using deep learning to interpolate the missing data in time-series for credit risks along supply chain
PurposeAs the supply chain is a highly integrated infrastructure in modern business, the risks in supply chain are also becoming highly contagious among the target company. This motivates researchers to continuously add new features to the datasets for the credit risk prediction (CRP). However, adding new features can easily lead to missing of the data.Design/methodology/approachBased on the gaps summarized from the literature in CRP, this study first introduces the approaches to the building of datasets and the framing of the algorithmic models. Then, this study tests the interpolation effects of the algorithmic model in three artificial datasets with different missing rates and compares its predictability before and after the interpolation in a real dataset with the missing data in irregular time-series.FindingsThe algorithmic model of the time-decayed long short-term memory (TD-LSTM) proposed in this study can monitor the missing data in irregular time-series by capturing more and better time-series information, and interpolating the missing data efficiently. Moreover, the algorithmic model of Deep Neural Network can be used in the CRP for the datasets with the missing data in irregular time-series after the interpolation by the TD-LSTM.Originality/valueThis study fully validates the TD-LSTM interpolation effects and demonstrates that the predictability of the dataset after interpolation is improved. Accurate and timely CRP can undoubtedly assist a target company in avoiding losses. Identifying credit risks and taking preventive measures ahead of time, especially in the case of public emergencies, can help the company minimize losses.