{"title":"利用开箱即用的检索模型改善心理健康支持","authors":"Theo Rummer-Downing, Julie Weeds","doi":"10.5220/0011634300003414","DOIUrl":null,"url":null,"abstract":": This work compares the performance of several information retrieval (IR) models in the search for relevant mental health documents based on relevance to forum post queries from a fully-moderated online mental health service. Three different architectures are assessed: a sparse lexical model, BM25, is used as a base-line, alongside two neural SBERT-based architectures - the bi-encoder and the cross-encoder. We highlight the credibility of using pretrained language models (PLMs) out-of-the-box, without an additional fine-tuning stage, to achieve high retrieval quality across a limited set of resources. Error analysis of the ranking results suggested PLMs make errors on documents which contain so called red-herrings - words which are semantically related but irrelevant to the query - whereas human judgements were found to suffer when queries are vague and present no clear information need. Further, we show that bias towards an author’s writing style within a PLM affects retrieval quality and, therefore, can impact on the success of mental health support if left unaddressed.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"17 1","pages":"64-73"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Out-of-the-Box Retrieval Models to Improve Mental Health Support\",\"authors\":\"Theo Rummer-Downing, Julie Weeds\",\"doi\":\"10.5220/0011634300003414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This work compares the performance of several information retrieval (IR) models in the search for relevant mental health documents based on relevance to forum post queries from a fully-moderated online mental health service. Three different architectures are assessed: a sparse lexical model, BM25, is used as a base-line, alongside two neural SBERT-based architectures - the bi-encoder and the cross-encoder. We highlight the credibility of using pretrained language models (PLMs) out-of-the-box, without an additional fine-tuning stage, to achieve high retrieval quality across a limited set of resources. Error analysis of the ranking results suggested PLMs make errors on documents which contain so called red-herrings - words which are semantically related but irrelevant to the query - whereas human judgements were found to suffer when queries are vague and present no clear information need. Further, we show that bias towards an author’s writing style within a PLM affects retrieval quality and, therefore, can impact on the success of mental health support if left unaddressed.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":\"17 1\",\"pages\":\"64-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011634300003414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011634300003414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging Out-of-the-Box Retrieval Models to Improve Mental Health Support
: This work compares the performance of several information retrieval (IR) models in the search for relevant mental health documents based on relevance to forum post queries from a fully-moderated online mental health service. Three different architectures are assessed: a sparse lexical model, BM25, is used as a base-line, alongside two neural SBERT-based architectures - the bi-encoder and the cross-encoder. We highlight the credibility of using pretrained language models (PLMs) out-of-the-box, without an additional fine-tuning stage, to achieve high retrieval quality across a limited set of resources. Error analysis of the ranking results suggested PLMs make errors on documents which contain so called red-herrings - words which are semantically related but irrelevant to the query - whereas human judgements were found to suffer when queries are vague and present no clear information need. Further, we show that bias towards an author’s writing style within a PLM affects retrieval quality and, therefore, can impact on the success of mental health support if left unaddressed.