温度对COVID-19住院风险的延迟影响:来自印度孟买的证据

Q3 Mathematics Epidemiologic Methods Pub Date : 2020-05-01 DOI:10.1515/em-2020-0039
V. Nair, Rahul Thekkedath, Paduthol Godan Sankaran
{"title":"温度对COVID-19住院风险的延迟影响:来自印度孟买的证据","authors":"V. Nair, Rahul Thekkedath, Paduthol Godan Sankaran","doi":"10.1515/em-2020-0039","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Meteorological factors and climatic variability have an immense influence on the transmission of infectious diseases and significantly impact human health. Present study quantifies the delayed effect of atmospheric temperature on the risk of hospitalization due to the Coronavirus disease 2019 (COVID-19) with adjusting the effects of other environmental factors in Mumbai, India. Methods The daily reported data of the number of hospitalized COVID-19 positive cases and the environmental factors at Mumbai, Maharashtra, India were collected and analyzed to quantify the main and the delayed effects. Exploratory data analysis and Distributed Linear and Non-linear lag Model (DLNM) with Generalized Additive Model (GAM) specification have applied to analyze the data. Results The study identified the Diurnal Temperature Range (DTR) delayed effect on the risk of hospitalization changed over the lag period of 0–14 days with increasing Relative Risk (RR) at the low DTR and decreasing RR at the higher DTR values. The extreme DTR suggests a high risk of hospitalization at earlier lags (i.e., 0–5 days). DTR’s cumulative effect was significant at higher 0–10 lag days (p-value <0.05). Exposure to the low and moderate DTR suggests a high risk of hospitalization with more than six days of lag. The RR for daily average humidity with 95% C.I was 0.996 (0.967, 1.027). The risk of hospitalization due to COVID-19 showed an increasing nature (p-value <0.05) with the increase in air pollution and average wind speed (WSAvg) at lag 0. Also, the risk of hospitalization changed through different lag periods of DTR. The analysis confirms the higher amount of delayed effect due to low DTR compared with moderate and high DTR. Conclusions The study suggests that both the climatic variations and air quality have significant impact on the transmission of the global pandemic COVID-19.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The delayed effect of temperature on the risk of hospitalization due to COVID-19: evidence from Mumbai, India\",\"authors\":\"V. Nair, Rahul Thekkedath, Paduthol Godan Sankaran\",\"doi\":\"10.1515/em-2020-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Meteorological factors and climatic variability have an immense influence on the transmission of infectious diseases and significantly impact human health. Present study quantifies the delayed effect of atmospheric temperature on the risk of hospitalization due to the Coronavirus disease 2019 (COVID-19) with adjusting the effects of other environmental factors in Mumbai, India. Methods The daily reported data of the number of hospitalized COVID-19 positive cases and the environmental factors at Mumbai, Maharashtra, India were collected and analyzed to quantify the main and the delayed effects. Exploratory data analysis and Distributed Linear and Non-linear lag Model (DLNM) with Generalized Additive Model (GAM) specification have applied to analyze the data. Results The study identified the Diurnal Temperature Range (DTR) delayed effect on the risk of hospitalization changed over the lag period of 0–14 days with increasing Relative Risk (RR) at the low DTR and decreasing RR at the higher DTR values. The extreme DTR suggests a high risk of hospitalization at earlier lags (i.e., 0–5 days). DTR’s cumulative effect was significant at higher 0–10 lag days (p-value <0.05). Exposure to the low and moderate DTR suggests a high risk of hospitalization with more than six days of lag. The RR for daily average humidity with 95% C.I was 0.996 (0.967, 1.027). The risk of hospitalization due to COVID-19 showed an increasing nature (p-value <0.05) with the increase in air pollution and average wind speed (WSAvg) at lag 0. Also, the risk of hospitalization changed through different lag periods of DTR. The analysis confirms the higher amount of delayed effect due to low DTR compared with moderate and high DTR. Conclusions The study suggests that both the climatic variations and air quality have significant impact on the transmission of the global pandemic COVID-19.\",\"PeriodicalId\":37999,\"journal\":{\"name\":\"Epidemiologic Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/em-2020-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2020-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要目的气象因素和气候变率对传染病的传播影响巨大,对人类健康产生重大影响。本研究量化了印度孟买气温对2019冠状病毒病(COVID-19)住院风险的延迟效应,并调整了其他环境因素的影响。方法收集印度马哈拉施特拉邦孟买市每日报告的COVID-19阳性住院病例数和环境因素数据,量化其主要影响和延迟影响。应用探索性数据分析和广义加性模型(GAM)规范的分布式线性和非线性滞后模型(DLNM)对数据进行分析。结果研究发现,在0 ~ 14 d的滞后期内,相对危险度(RR)在低温度范围内升高,在高温度范围内降低。极端的DTR表明在较早的滞后期(即0-5天)住院的风险很高。DTR的累积效应在滞后期0 ~ 10 d显著(p值<0.05)。暴露于低和中等DTR表明,延迟6天以上的住院风险很高。日平均湿度与95% ci的RR分别为0.996(0.967,1.027)。在滞后0时,随着空气污染和平均风速的增加,新型冠状病毒肺炎住院风险呈增加趋势(p值<0.05)。住院风险也随着DTR滞后时间的不同而变化。分析证实,与中等和高DTR相比,低DTR导致的延迟效应量更高。结论气候变化和空气质量对新冠肺炎全球传播均有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The delayed effect of temperature on the risk of hospitalization due to COVID-19: evidence from Mumbai, India
Abstract Objectives Meteorological factors and climatic variability have an immense influence on the transmission of infectious diseases and significantly impact human health. Present study quantifies the delayed effect of atmospheric temperature on the risk of hospitalization due to the Coronavirus disease 2019 (COVID-19) with adjusting the effects of other environmental factors in Mumbai, India. Methods The daily reported data of the number of hospitalized COVID-19 positive cases and the environmental factors at Mumbai, Maharashtra, India were collected and analyzed to quantify the main and the delayed effects. Exploratory data analysis and Distributed Linear and Non-linear lag Model (DLNM) with Generalized Additive Model (GAM) specification have applied to analyze the data. Results The study identified the Diurnal Temperature Range (DTR) delayed effect on the risk of hospitalization changed over the lag period of 0–14 days with increasing Relative Risk (RR) at the low DTR and decreasing RR at the higher DTR values. The extreme DTR suggests a high risk of hospitalization at earlier lags (i.e., 0–5 days). DTR’s cumulative effect was significant at higher 0–10 lag days (p-value <0.05). Exposure to the low and moderate DTR suggests a high risk of hospitalization with more than six days of lag. The RR for daily average humidity with 95% C.I was 0.996 (0.967, 1.027). The risk of hospitalization due to COVID-19 showed an increasing nature (p-value <0.05) with the increase in air pollution and average wind speed (WSAvg) at lag 0. Also, the risk of hospitalization changed through different lag periods of DTR. The analysis confirms the higher amount of delayed effect due to low DTR compared with moderate and high DTR. Conclusions The study suggests that both the climatic variations and air quality have significant impact on the transmission of the global pandemic COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiologic Methods
Epidemiologic Methods Mathematics-Applied Mathematics
CiteScore
2.10
自引率
0.00%
发文量
7
期刊介绍: Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis
期刊最新文献
Linked shrinkage to improve estimation of interaction effects in regression models. Bounds for selection bias using outcome probabilities Population dynamic study of two prey one predator system with disease in first prey using fuzzy impulsive control Development and application of an evidence-based directed acyclic graph to evaluate the associations between metal mixtures and cardiometabolic outcomes. Performance evaluation of ResNet model for classification of tomato plant disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1