利用GAMESS中的片段分子轨道法实现高精度大规模从头算

Maricris L. Mayes, G. Fletcher, M. Gordon
{"title":"利用GAMESS中的片段分子轨道法实现高精度大规模从头算","authors":"Maricris L. Mayes, G. Fletcher, M. Gordon","doi":"10.1109/SC.Companion.2012.170","DOIUrl":null,"url":null,"abstract":"Summary form only given. One of the major challenges of modern quantum chemistry (QC) is to apply it to large systems with thousands of correlated electrons and basis functions. The availability of supercomputers and development of novel methods are necessary to realize this challenge. In particular, we employ linear scaling Fragment Molecular Orbital (FMO) method which decompose the large system into smaller, localized fragments which can be treated with high-level QC method like MP2. FMO is inherently scalable since the individual fragment calculations can be carried out simultaneously on separate processor groups. It is implemented in GAMESS, a popular ab-initio QC program. We present the scalability and performance of FMO on Intrepid (Blue Gene/P) and Blue Gene/Q systems at ALCF.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"109 1","pages":"1335-1335"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract: Towards Highly Accurate Large-Scale Ab Initio Calculations Using Fragment Molecular Orbital Method in GAMESS\",\"authors\":\"Maricris L. Mayes, G. Fletcher, M. Gordon\",\"doi\":\"10.1109/SC.Companion.2012.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. One of the major challenges of modern quantum chemistry (QC) is to apply it to large systems with thousands of correlated electrons and basis functions. The availability of supercomputers and development of novel methods are necessary to realize this challenge. In particular, we employ linear scaling Fragment Molecular Orbital (FMO) method which decompose the large system into smaller, localized fragments which can be treated with high-level QC method like MP2. FMO is inherently scalable since the individual fragment calculations can be carried out simultaneously on separate processor groups. It is implemented in GAMESS, a popular ab-initio QC program. We present the scalability and performance of FMO on Intrepid (Blue Gene/P) and Blue Gene/Q systems at ALCF.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"109 1\",\"pages\":\"1335-1335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。现代量子化学(QC)的主要挑战之一是将其应用于具有数千个相关电子和基函数的大型系统。要实现这一挑战,超级计算机的可用性和新方法的发展是必要的。特别是,我们采用线性缩放片段分子轨道(FMO)方法,将大系统分解成更小的局部片段,可以用MP2等高级QC方法处理。FMO具有固有的可扩展性,因为单个片段计算可以在单独的处理器组上同时进行。它是在GAMESS中实现的,GAMESS是一个流行的从头算QC程序。我们在ALCF的Intrepid (Blue Gene/P)和Blue Gene/Q系统上展示了FMO的可扩展性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract: Towards Highly Accurate Large-Scale Ab Initio Calculations Using Fragment Molecular Orbital Method in GAMESS
Summary form only given. One of the major challenges of modern quantum chemistry (QC) is to apply it to large systems with thousands of correlated electrons and basis functions. The availability of supercomputers and development of novel methods are necessary to realize this challenge. In particular, we employ linear scaling Fragment Molecular Orbital (FMO) method which decompose the large system into smaller, localized fragments which can be treated with high-level QC method like MP2. FMO is inherently scalable since the individual fragment calculations can be carried out simultaneously on separate processor groups. It is implemented in GAMESS, a popular ab-initio QC program. We present the scalability and performance of FMO on Intrepid (Blue Gene/P) and Blue Gene/Q systems at ALCF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1