{"title":"WebIQ:从Web学习匹配深度Web查询接口","authors":"Wensheng Wu, A. Doan, Clement T. Yu","doi":"10.1109/ICDE.2006.172","DOIUrl":null,"url":null,"abstract":"Integrating Deep Web sources requires highly accurate semantic matches between the attributes of the source query interfaces. These matches are usually established by comparing the similarities of the attributes’ labels and instances. However, attributes on query interfaces often have no or very few data instances. The pervasive lack of instances seriously reduces the accuracy of current matching techniques. To address this problem, we describe WebIQ, a solution that learns from both the Surface Web and the Deep Web to automatically discover instances for interface attributes. WebIQ extends question answering techniques commonly used in the AI community for this purpose. We describe how to incorporate WebIQ into current interface matching systems. Extensive experiments over five realworld domains show the utility ofWebIQ. In particular, the results show that acquired instances help improve matching accuracy from 89.5% F-1 to 97.5%, at only a modest runtime overhead.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"66 1","pages":"44-44"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"WebIQ: Learning from the Web to Match Deep-Web Query Interfaces\",\"authors\":\"Wensheng Wu, A. Doan, Clement T. Yu\",\"doi\":\"10.1109/ICDE.2006.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating Deep Web sources requires highly accurate semantic matches between the attributes of the source query interfaces. These matches are usually established by comparing the similarities of the attributes’ labels and instances. However, attributes on query interfaces often have no or very few data instances. The pervasive lack of instances seriously reduces the accuracy of current matching techniques. To address this problem, we describe WebIQ, a solution that learns from both the Surface Web and the Deep Web to automatically discover instances for interface attributes. WebIQ extends question answering techniques commonly used in the AI community for this purpose. We describe how to incorporate WebIQ into current interface matching systems. Extensive experiments over five realworld domains show the utility ofWebIQ. In particular, the results show that acquired instances help improve matching accuracy from 89.5% F-1 to 97.5%, at only a modest runtime overhead.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"66 1\",\"pages\":\"44-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WebIQ: Learning from the Web to Match Deep-Web Query Interfaces
Integrating Deep Web sources requires highly accurate semantic matches between the attributes of the source query interfaces. These matches are usually established by comparing the similarities of the attributes’ labels and instances. However, attributes on query interfaces often have no or very few data instances. The pervasive lack of instances seriously reduces the accuracy of current matching techniques. To address this problem, we describe WebIQ, a solution that learns from both the Surface Web and the Deep Web to automatically discover instances for interface attributes. WebIQ extends question answering techniques commonly used in the AI community for this purpose. We describe how to incorporate WebIQ into current interface matching systems. Extensive experiments over five realworld domains show the utility ofWebIQ. In particular, the results show that acquired instances help improve matching accuracy from 89.5% F-1 to 97.5%, at only a modest runtime overhead.