{"title":"水下图像的折射三维重建","authors":"Anne Jordt , Kevin Köser , Reinhard Koch","doi":"10.1016/j.mio.2016.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Cameras can be considered measurement devices complementary to acoustic sensors when it comes to surveying marine environments. When calibrated and used correctly, these visual sensors are well-suited for automated detection, quantification, mapping, and monitoring applications and when aiming at high-accuracy 3D models or change detection. In underwater scenarios, cameras are often set up in pressure housings with a flat glass window, a flat port, which allows them to observe the environment. In this contribution, a geometric model for image formation is discussed that explicitly considers refraction at the interface under realistic assumptions like a slightly misaligned camera (w.r.t. the glass normal) and thick glass ports as common for deep sea applications. Then, starting from camera calibration, a complete, fully automated 3D reconstruction system is discussed that takes an image sequence and produces a 3D model. Newly derived refractive estimators for sparse two-view geometry, pose estimation, bundle adjustment, and dense depth estimation are discussed and evaluated in detail.</p></div>","PeriodicalId":100922,"journal":{"name":"Methods in Oceanography","volume":"15 ","pages":"Pages 90-113"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mio.2016.03.001","citationCount":"48","resultStr":"{\"title\":\"Refractive 3D reconstruction on underwater images\",\"authors\":\"Anne Jordt , Kevin Köser , Reinhard Koch\",\"doi\":\"10.1016/j.mio.2016.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cameras can be considered measurement devices complementary to acoustic sensors when it comes to surveying marine environments. When calibrated and used correctly, these visual sensors are well-suited for automated detection, quantification, mapping, and monitoring applications and when aiming at high-accuracy 3D models or change detection. In underwater scenarios, cameras are often set up in pressure housings with a flat glass window, a flat port, which allows them to observe the environment. In this contribution, a geometric model for image formation is discussed that explicitly considers refraction at the interface under realistic assumptions like a slightly misaligned camera (w.r.t. the glass normal) and thick glass ports as common for deep sea applications. Then, starting from camera calibration, a complete, fully automated 3D reconstruction system is discussed that takes an image sequence and produces a 3D model. Newly derived refractive estimators for sparse two-view geometry, pose estimation, bundle adjustment, and dense depth estimation are discussed and evaluated in detail.</p></div>\",\"PeriodicalId\":100922,\"journal\":{\"name\":\"Methods in Oceanography\",\"volume\":\"15 \",\"pages\":\"Pages 90-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mio.2016.03.001\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211122015300086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211122015300086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cameras can be considered measurement devices complementary to acoustic sensors when it comes to surveying marine environments. When calibrated and used correctly, these visual sensors are well-suited for automated detection, quantification, mapping, and monitoring applications and when aiming at high-accuracy 3D models or change detection. In underwater scenarios, cameras are often set up in pressure housings with a flat glass window, a flat port, which allows them to observe the environment. In this contribution, a geometric model for image formation is discussed that explicitly considers refraction at the interface under realistic assumptions like a slightly misaligned camera (w.r.t. the glass normal) and thick glass ports as common for deep sea applications. Then, starting from camera calibration, a complete, fully automated 3D reconstruction system is discussed that takes an image sequence and produces a 3D model. Newly derived refractive estimators for sparse two-view geometry, pose estimation, bundle adjustment, and dense depth estimation are discussed and evaluated in detail.