{"title":"在低功耗物联网网络中最大化智能设备寿命的网络蓝图","authors":"P. Sarwesh, K. Chandrasekaran, S. Thamizharasan","doi":"10.4018/IJGHPC.2021040102","DOIUrl":null,"url":null,"abstract":"In the modern communication and computation era, internet of things (IoT) is developing as the key technology that satisfies the requirements of various applications. Prolonging device lifetime and maintaining network reliability is the evident objective for IoT network. Therefore, the authors come up with the network architecture that integrates node placement technique and routing technique. In the architecture, node placement is implemented by varying the density of nodes, by varying battery level of nodes, and by varying transmission range of nodes. Energy efficient and reliable path computation is addressed by routing technique. Therefore, enhancing the features of routing and node placement technique and integrating them together in network architecture can efficiently prolong the network lifetime. From the results, the authors observed that the proposed network architecture prolongs the network lifetime two times better than the standard model and also outperforms EQSR protocol and maintains the reliable data transfer.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"15 1","pages":"21-38"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Blueprint for Maximizing the Lifetime of Smart Devices in Low Power IoT Networks\",\"authors\":\"P. Sarwesh, K. Chandrasekaran, S. Thamizharasan\",\"doi\":\"10.4018/IJGHPC.2021040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern communication and computation era, internet of things (IoT) is developing as the key technology that satisfies the requirements of various applications. Prolonging device lifetime and maintaining network reliability is the evident objective for IoT network. Therefore, the authors come up with the network architecture that integrates node placement technique and routing technique. In the architecture, node placement is implemented by varying the density of nodes, by varying battery level of nodes, and by varying transmission range of nodes. Energy efficient and reliable path computation is addressed by routing technique. Therefore, enhancing the features of routing and node placement technique and integrating them together in network architecture can efficiently prolong the network lifetime. From the results, the authors observed that the proposed network architecture prolongs the network lifetime two times better than the standard model and also outperforms EQSR protocol and maintains the reliable data transfer.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"15 1\",\"pages\":\"21-38\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2021040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2021040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Network Blueprint for Maximizing the Lifetime of Smart Devices in Low Power IoT Networks
In the modern communication and computation era, internet of things (IoT) is developing as the key technology that satisfies the requirements of various applications. Prolonging device lifetime and maintaining network reliability is the evident objective for IoT network. Therefore, the authors come up with the network architecture that integrates node placement technique and routing technique. In the architecture, node placement is implemented by varying the density of nodes, by varying battery level of nodes, and by varying transmission range of nodes. Energy efficient and reliable path computation is addressed by routing technique. Therefore, enhancing the features of routing and node placement technique and integrating them together in network architecture can efficiently prolong the network lifetime. From the results, the authors observed that the proposed network architecture prolongs the network lifetime two times better than the standard model and also outperforms EQSR protocol and maintains the reliable data transfer.