用功能子集来扩展Chromium浏览器

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, Wenke Lee
{"title":"用功能子集来扩展Chromium浏览器","authors":"Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, Wenke Lee","doi":"10.1145/3372297.3417866","DOIUrl":null,"url":null,"abstract":"Today, a web browser plays a crucial role in offering a broad spectrum of web experiences. The most popular browser, Chromium, has become an extremely complex application to meet ever-increasing user demands, exposing unavoidably large attack vectors due to its large code base. Code debloating attracts attention as a means of reducing such a potential attack surface by eliminating unused code. However, it is very challenging to perform sophisticated code removal without breaking needed functionalities because Chromium operates on a large number of closely connected and complex components, such as a renderer and JavaScript engine. In this paper, we present Slimium, a debloating framework for a browser (i.e., Chromium) that harnesses a hybrid approach for a fast and reliable binary instrumentation. The main idea behind Slimium is to determine a set of features as a debloating unit on top of a hybrid (i.e., static, dynamic, heuristic) analysis, and then leverage feature subsetting to code debloating. It aids in i) focusing on security-oriented features, ii) discarding unneeded code simply without complications, and iii)~reasonably addressing a non-deterministic path problem raised from code complexity. To this end, we generate a feature-code map with a relation vector technique and prompt webpage profiling results. Our experimental results demonstrate the practicality and feasibility of Slimium for 40 popular websites, as on average it removes 94 CVEs (61.4%) by cutting down 23.85 MB code (53.1%) from defined features (21.7% of the whole) in Chromium.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Slimium: Debloating the Chromium Browser with Feature Subsetting\",\"authors\":\"Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, Wenke Lee\",\"doi\":\"10.1145/3372297.3417866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, a web browser plays a crucial role in offering a broad spectrum of web experiences. The most popular browser, Chromium, has become an extremely complex application to meet ever-increasing user demands, exposing unavoidably large attack vectors due to its large code base. Code debloating attracts attention as a means of reducing such a potential attack surface by eliminating unused code. However, it is very challenging to perform sophisticated code removal without breaking needed functionalities because Chromium operates on a large number of closely connected and complex components, such as a renderer and JavaScript engine. In this paper, we present Slimium, a debloating framework for a browser (i.e., Chromium) that harnesses a hybrid approach for a fast and reliable binary instrumentation. The main idea behind Slimium is to determine a set of features as a debloating unit on top of a hybrid (i.e., static, dynamic, heuristic) analysis, and then leverage feature subsetting to code debloating. It aids in i) focusing on security-oriented features, ii) discarding unneeded code simply without complications, and iii)~reasonably addressing a non-deterministic path problem raised from code complexity. To this end, we generate a feature-code map with a relation vector technique and prompt webpage profiling results. Our experimental results demonstrate the practicality and feasibility of Slimium for 40 popular websites, as on average it removes 94 CVEs (61.4%) by cutting down 23.85 MB code (53.1%) from defined features (21.7% of the whole) in Chromium.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

今天,网络浏览器在提供广泛的网络体验方面起着至关重要的作用。最流行的浏览器Chromium已经成为一个极其复杂的应用程序,以满足不断增长的用户需求,由于其庞大的代码库,不可避免地暴露出巨大的攻击向量。代码膨胀作为一种通过消除未使用的代码来减少潜在攻击面的方法引起了人们的注意。然而,在不破坏所需功能的情况下执行复杂的代码删除是非常具有挑战性的,因为Chromium运行在大量紧密相连的复杂组件上,比如渲染器和JavaScript引擎。在本文中,我们介绍了Slimium,一个浏览器(即Chromium)的扩展框架,它利用混合方法实现快速可靠的二进制工具。Slimium背后的主要思想是在混合(即静态、动态、启发式)分析的基础上确定一组特性作为扩展单元,然后利用特性子集进行代码扩展。它有助于i)专注于面向安全的特性,ii)简单地丢弃不需要的代码而不引起复杂性,以及iii)合理地解决由代码复杂性引起的非确定性路径问题。为此,我们使用关系向量技术生成特征代码图,并提示网页分析结果。我们的实验结果证明了slimum在40个流行网站上的实用性和可行性,因为它平均删除了94个cve(61.4%),减少了23.85 MB的代码(53.1%),从定义的功能(占总数的21.7%)在Chromium中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slimium: Debloating the Chromium Browser with Feature Subsetting
Today, a web browser plays a crucial role in offering a broad spectrum of web experiences. The most popular browser, Chromium, has become an extremely complex application to meet ever-increasing user demands, exposing unavoidably large attack vectors due to its large code base. Code debloating attracts attention as a means of reducing such a potential attack surface by eliminating unused code. However, it is very challenging to perform sophisticated code removal without breaking needed functionalities because Chromium operates on a large number of closely connected and complex components, such as a renderer and JavaScript engine. In this paper, we present Slimium, a debloating framework for a browser (i.e., Chromium) that harnesses a hybrid approach for a fast and reliable binary instrumentation. The main idea behind Slimium is to determine a set of features as a debloating unit on top of a hybrid (i.e., static, dynamic, heuristic) analysis, and then leverage feature subsetting to code debloating. It aids in i) focusing on security-oriented features, ii) discarding unneeded code simply without complications, and iii)~reasonably addressing a non-deterministic path problem raised from code complexity. To this end, we generate a feature-code map with a relation vector technique and prompt webpage profiling results. Our experimental results demonstrate the practicality and feasibility of Slimium for 40 popular websites, as on average it removes 94 CVEs (61.4%) by cutting down 23.85 MB code (53.1%) from defined features (21.7% of the whole) in Chromium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 1D: Applied Cryptography and Cryptanalysis HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms) Pointproofs: Aggregating Proofs for Multiple Vector Commitments Session details: Session 4D: Distributed Protocols A Performant, Misuse-Resistant API for Primality Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1