{"title":"纳米层合材料纳米压痕的有限元分析","authors":"S. Özerinç","doi":"10.18038/aubtda.446535","DOIUrl":null,"url":null,"abstract":"Nanoindentation is a widely used tool for probing the mechanical properties of materials at the nanoscale. The analysis of the load-displacement curve obtained from nanoindentation provides the hardness and elastic modulus of the material. While hardness is a useful parameter for comparing different alloys and understanding tribological behavior, yield strength is a more useful parameter for alloy design and application in general. The yield strength of a nanoindentation-tested material can be estimated by combining the hardness result with the Tabor factor. This approach is well-established for homogeneous and isotropic materials; however, the application of the approach to recently developed laminated nanocomposites requires a better understanding of the plasticity under nanoindentation. Due to the complicated stress state and the nonhomogeneous geometry of the nanolaminated structure, there is a need to employ numerical methods for this analysis. In this study, the mechanical behavior of a model system of nanolaminated Cu-Nb under nanoindentation was investigated, through modeling the test using finite element method. The force-controlled simulation provided the load-displacement curve that would be obtained from an actual experiment, and Oliver-Pharr method was employed to obtain the hardness of the nanocomposite. The results show that the rule-of-mixture is a good approximation for estimating the nanoindentation hardness of the composites, if the mechanical properties of the constituents are known.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FINITE ELEMENT ANALYSIS OF NANOINDENTATION ON NANOLAMINATED MATERIALS\",\"authors\":\"S. Özerinç\",\"doi\":\"10.18038/aubtda.446535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoindentation is a widely used tool for probing the mechanical properties of materials at the nanoscale. The analysis of the load-displacement curve obtained from nanoindentation provides the hardness and elastic modulus of the material. While hardness is a useful parameter for comparing different alloys and understanding tribological behavior, yield strength is a more useful parameter for alloy design and application in general. The yield strength of a nanoindentation-tested material can be estimated by combining the hardness result with the Tabor factor. This approach is well-established for homogeneous and isotropic materials; however, the application of the approach to recently developed laminated nanocomposites requires a better understanding of the plasticity under nanoindentation. Due to the complicated stress state and the nonhomogeneous geometry of the nanolaminated structure, there is a need to employ numerical methods for this analysis. In this study, the mechanical behavior of a model system of nanolaminated Cu-Nb under nanoindentation was investigated, through modeling the test using finite element method. The force-controlled simulation provided the load-displacement curve that would be obtained from an actual experiment, and Oliver-Pharr method was employed to obtain the hardness of the nanocomposite. The results show that the rule-of-mixture is a good approximation for estimating the nanoindentation hardness of the composites, if the mechanical properties of the constituents are known.\",\"PeriodicalId\":7757,\"journal\":{\"name\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18038/aubtda.446535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18038/aubtda.446535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FINITE ELEMENT ANALYSIS OF NANOINDENTATION ON NANOLAMINATED MATERIALS
Nanoindentation is a widely used tool for probing the mechanical properties of materials at the nanoscale. The analysis of the load-displacement curve obtained from nanoindentation provides the hardness and elastic modulus of the material. While hardness is a useful parameter for comparing different alloys and understanding tribological behavior, yield strength is a more useful parameter for alloy design and application in general. The yield strength of a nanoindentation-tested material can be estimated by combining the hardness result with the Tabor factor. This approach is well-established for homogeneous and isotropic materials; however, the application of the approach to recently developed laminated nanocomposites requires a better understanding of the plasticity under nanoindentation. Due to the complicated stress state and the nonhomogeneous geometry of the nanolaminated structure, there is a need to employ numerical methods for this analysis. In this study, the mechanical behavior of a model system of nanolaminated Cu-Nb under nanoindentation was investigated, through modeling the test using finite element method. The force-controlled simulation provided the load-displacement curve that would be obtained from an actual experiment, and Oliver-Pharr method was employed to obtain the hardness of the nanocomposite. The results show that the rule-of-mixture is a good approximation for estimating the nanoindentation hardness of the composites, if the mechanical properties of the constituents are known.