{"title":"Linde Clinsulf®硫回收过程:建模和模拟","authors":"Ulrich von Gemmingen, Ulrich Lahne","doi":"10.1016/0950-4214(94)80004-9","DOIUrl":null,"url":null,"abstract":"<div><p>Extending the adsorption simulation model ADLIN® to chemical reactions with catalysts we have designed a favourable modification to the Linde Clinsulf® process which converts H<sub>2</sub>S and COS to sulfur. Using a detailed precooling treatment before switching the hot and cold reactors we were able to reduce the typical lack in conversion to merely 0.5% which guarantees an overall sulfur recovery above 99.7% during the entire cycle time. The model calculations reveal the complex interaction of chemical reaction, adsorption, condensation and heat transfer for designing actual plants.</p></div>","PeriodicalId":12586,"journal":{"name":"Gas Separation & Purification","volume":"8 4","pages":"Pages 241-246"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0950-4214(94)80004-9","citationCount":"6","resultStr":"{\"title\":\"The Linde Clinsulf® process for sulfur recovery: Modelling and simulation\",\"authors\":\"Ulrich von Gemmingen, Ulrich Lahne\",\"doi\":\"10.1016/0950-4214(94)80004-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extending the adsorption simulation model ADLIN® to chemical reactions with catalysts we have designed a favourable modification to the Linde Clinsulf® process which converts H<sub>2</sub>S and COS to sulfur. Using a detailed precooling treatment before switching the hot and cold reactors we were able to reduce the typical lack in conversion to merely 0.5% which guarantees an overall sulfur recovery above 99.7% during the entire cycle time. The model calculations reveal the complex interaction of chemical reaction, adsorption, condensation and heat transfer for designing actual plants.</p></div>\",\"PeriodicalId\":12586,\"journal\":{\"name\":\"Gas Separation & Purification\",\"volume\":\"8 4\",\"pages\":\"Pages 241-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0950-4214(94)80004-9\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Separation & Purification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0950421494800049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Separation & Purification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0950421494800049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Linde Clinsulf® process for sulfur recovery: Modelling and simulation
Extending the adsorption simulation model ADLIN® to chemical reactions with catalysts we have designed a favourable modification to the Linde Clinsulf® process which converts H2S and COS to sulfur. Using a detailed precooling treatment before switching the hot and cold reactors we were able to reduce the typical lack in conversion to merely 0.5% which guarantees an overall sulfur recovery above 99.7% during the entire cycle time. The model calculations reveal the complex interaction of chemical reaction, adsorption, condensation and heat transfer for designing actual plants.