基于人工神经网络的多机组空调能耗缺失值估计

Paradorn Pimporn, S. Kittipiyakul, J. Kudtongngam, H. Fujita
{"title":"基于人工神经网络的多机组空调能耗缺失值估计","authors":"Paradorn Pimporn, S. Kittipiyakul, J. Kudtongngam, H. Fujita","doi":"10.1109/ICESIT-ICICTES.2018.8442059","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to retrieve the missing data of power consumption of multi-unit air conditioners by using Artificial Neural Networks (ANN). The problem of missing data may occur from a sensor, a microcontroller or a communication problem. We have to retrieve the missing data in order that we can use them to find a solution to improve the efficiency of energy usage in a building. The proposed method uses related data with the missing data i.e. behavior of other air conditioners, a different temperature among inside, outside, and air conditioner pad controls setting value to feed the ANN model. Effectiveness of the proposed method is evaluated by comparison with other state of art classification algorithms.","PeriodicalId":57136,"journal":{"name":"单片机与嵌入式系统应用","volume":"44 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Missing Value Estimation of Energy Consumption of Multi-Unit Air Conditioners using Artificial Neural Networks\",\"authors\":\"Paradorn Pimporn, S. Kittipiyakul, J. Kudtongngam, H. Fujita\",\"doi\":\"10.1109/ICESIT-ICICTES.2018.8442059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to retrieve the missing data of power consumption of multi-unit air conditioners by using Artificial Neural Networks (ANN). The problem of missing data may occur from a sensor, a microcontroller or a communication problem. We have to retrieve the missing data in order that we can use them to find a solution to improve the efficiency of energy usage in a building. The proposed method uses related data with the missing data i.e. behavior of other air conditioners, a different temperature among inside, outside, and air conditioner pad controls setting value to feed the ANN model. Effectiveness of the proposed method is evaluated by comparison with other state of art classification algorithms.\",\"PeriodicalId\":57136,\"journal\":{\"name\":\"单片机与嵌入式系统应用\",\"volume\":\"44 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"单片机与嵌入式系统应用\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT-ICICTES.2018.8442059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"单片机与嵌入式系统应用","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICESIT-ICICTES.2018.8442059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用人工神经网络(ANN)检索多机组空调耗电量缺失数据的方法。丢失数据的问题可能发生在传感器、微控制器或通信问题上。我们必须检索丢失的数据,以便我们可以利用它们找到提高建筑物能源使用效率的解决方案。该方法将其他空调的行为、室内外不同温度、空调垫控制设定值等相关数据与缺失数据相结合,馈送给人工神经网络模型。通过与其他先进分类算法的比较,评价了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Missing Value Estimation of Energy Consumption of Multi-Unit Air Conditioners using Artificial Neural Networks
This paper proposes a method to retrieve the missing data of power consumption of multi-unit air conditioners by using Artificial Neural Networks (ANN). The problem of missing data may occur from a sensor, a microcontroller or a communication problem. We have to retrieve the missing data in order that we can use them to find a solution to improve the efficiency of energy usage in a building. The proposed method uses related data with the missing data i.e. behavior of other air conditioners, a different temperature among inside, outside, and air conditioner pad controls setting value to feed the ANN model. Effectiveness of the proposed method is evaluated by comparison with other state of art classification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7395
期刊最新文献
Serial Interfaces for Distributed Embedded Systems Interfacing Personal Computers Basic concepts Design Examples High Level Languages for Microcontrollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1