S. V. Berkel, E. S. Malotaux, B. V. D. Bogert, M. Spirito, D. Cavallo, Andrea Neto, N. Llombart
{"title":"22nm CMOS偏振复用高分辨率无源太赫兹成像阵列","authors":"S. V. Berkel, E. S. Malotaux, B. V. D. Bogert, M. Spirito, D. Cavallo, Andrea Neto, N. Llombart","doi":"10.1109/IRMMW-THz.2019.8874183","DOIUrl":null,"url":null,"abstract":"A 12-pixel THz Focal Plane Array (FPA), integrated in Global Foundries 22nm CMOS technology, enabling high resolution passive THz imaging, is presented. The array efficiently couples blackbody radiation from 200 GHz to 600 GHz to Schottky Barrier Diodes (SBDs) in a differential topology. An antenna-detector co-design results in an average Noise Equivalent Power (NEP) of 0.9 pW/$\\sqrt{\\text{Hz}}$. An extremely small array periodicity is achieved by using two orthogonal polarizations. Such configuration enables passive imaging with a near-diffraction limited resolution while simultaneously maintaining a high optical efficiency of 42%. The array is currently in tape-out and measurements will be presented at the conference.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High Resolution Passive THz Imaging Array With Polarization Reusage in 22nm CMOS\",\"authors\":\"S. V. Berkel, E. S. Malotaux, B. V. D. Bogert, M. Spirito, D. Cavallo, Andrea Neto, N. Llombart\",\"doi\":\"10.1109/IRMMW-THz.2019.8874183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 12-pixel THz Focal Plane Array (FPA), integrated in Global Foundries 22nm CMOS technology, enabling high resolution passive THz imaging, is presented. The array efficiently couples blackbody radiation from 200 GHz to 600 GHz to Schottky Barrier Diodes (SBDs) in a differential topology. An antenna-detector co-design results in an average Noise Equivalent Power (NEP) of 0.9 pW/$\\\\sqrt{\\\\text{Hz}}$. An extremely small array periodicity is achieved by using two orthogonal polarizations. Such configuration enables passive imaging with a near-diffraction limited resolution while simultaneously maintaining a high optical efficiency of 42%. The array is currently in tape-out and measurements will be presented at the conference.\",\"PeriodicalId\":6686,\"journal\":{\"name\":\"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"volume\":\"54 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THz.2019.8874183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz.2019.8874183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Resolution Passive THz Imaging Array With Polarization Reusage in 22nm CMOS
A 12-pixel THz Focal Plane Array (FPA), integrated in Global Foundries 22nm CMOS technology, enabling high resolution passive THz imaging, is presented. The array efficiently couples blackbody radiation from 200 GHz to 600 GHz to Schottky Barrier Diodes (SBDs) in a differential topology. An antenna-detector co-design results in an average Noise Equivalent Power (NEP) of 0.9 pW/$\sqrt{\text{Hz}}$. An extremely small array periodicity is achieved by using two orthogonal polarizations. Such configuration enables passive imaging with a near-diffraction limited resolution while simultaneously maintaining a high optical efficiency of 42%. The array is currently in tape-out and measurements will be presented at the conference.