Xiaochen Shi, Yan Chen, Hong-Lan Jiang, Du-Li Yu, Xiaoliang Guo
{"title":"使用带有图像传感器的微柱阵列的高密度力和温度传感皮肤","authors":"Xiaochen Shi, Yan Chen, Hong-Lan Jiang, Du-Li Yu, Xiaoliang Guo","doi":"10.1002/aisy.202000280","DOIUrl":null,"url":null,"abstract":"Driving toward the goal of gaining a high level of intelligence and agility that mimics or surpasses that of humans, sensing systems have been widely investigated. As a complex network, tactile sense converts environmental stimuli into electrical impulses through various sensory receptors, which has been exploited in a large number of revolutionary applications, including robotics, prosthetics, and health‐monitoring devices. However, it remains significantly difficult to mimic all the functionalities of human skin. Herein, a machine tactile sensing system is proposed based on machine vision, which is commonly referred to as “electronic skin” or “e‐skin.” With a high density of 625 sensing points per square centimeter similar to that of human skin, the proposed sensing system can successfully measure 3D force and temperature distribution simultaneously. Based on this information, the shape, weight, texture, stiffness, and viscosity of objects can be obtained, comprehensively mimicking the human tactile system. Moreover, the experimental results show that the proposed e‐skin achieves excellent repeatability, reproducibility, and stability compared to those based on other principles such as the piezoresistive effect and capacitive effect.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High‐Density Force and Temperature Sensing Skin Using Micropillar Array with Image Sensor\",\"authors\":\"Xiaochen Shi, Yan Chen, Hong-Lan Jiang, Du-Li Yu, Xiaoliang Guo\",\"doi\":\"10.1002/aisy.202000280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driving toward the goal of gaining a high level of intelligence and agility that mimics or surpasses that of humans, sensing systems have been widely investigated. As a complex network, tactile sense converts environmental stimuli into electrical impulses through various sensory receptors, which has been exploited in a large number of revolutionary applications, including robotics, prosthetics, and health‐monitoring devices. However, it remains significantly difficult to mimic all the functionalities of human skin. Herein, a machine tactile sensing system is proposed based on machine vision, which is commonly referred to as “electronic skin” or “e‐skin.” With a high density of 625 sensing points per square centimeter similar to that of human skin, the proposed sensing system can successfully measure 3D force and temperature distribution simultaneously. Based on this information, the shape, weight, texture, stiffness, and viscosity of objects can be obtained, comprehensively mimicking the human tactile system. Moreover, the experimental results show that the proposed e‐skin achieves excellent repeatability, reproducibility, and stability compared to those based on other principles such as the piezoresistive effect and capacitive effect.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High‐Density Force and Temperature Sensing Skin Using Micropillar Array with Image Sensor
Driving toward the goal of gaining a high level of intelligence and agility that mimics or surpasses that of humans, sensing systems have been widely investigated. As a complex network, tactile sense converts environmental stimuli into electrical impulses through various sensory receptors, which has been exploited in a large number of revolutionary applications, including robotics, prosthetics, and health‐monitoring devices. However, it remains significantly difficult to mimic all the functionalities of human skin. Herein, a machine tactile sensing system is proposed based on machine vision, which is commonly referred to as “electronic skin” or “e‐skin.” With a high density of 625 sensing points per square centimeter similar to that of human skin, the proposed sensing system can successfully measure 3D force and temperature distribution simultaneously. Based on this information, the shape, weight, texture, stiffness, and viscosity of objects can be obtained, comprehensively mimicking the human tactile system. Moreover, the experimental results show that the proposed e‐skin achieves excellent repeatability, reproducibility, and stability compared to those based on other principles such as the piezoresistive effect and capacitive effect.