基于RDF知识图的约束推荐系统

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Supported Cooperative Work-The Journal of Collaborative Computing Pub Date : 2023-05-24 DOI:10.1109/CSCWD57460.2023.10152701
Ngoc Luyen Le, Marie-Hélène Abel, Philippe Gouspillou
{"title":"基于RDF知识图的约束推荐系统","authors":"Ngoc Luyen Le, Marie-Hélène Abel, Philippe Gouspillou","doi":"10.1109/CSCWD57460.2023.10152701","DOIUrl":null,"url":null,"abstract":"Knowledge graphs, represented in RDF, are able to model entities and their relations by means of ontologies. The use of knowledge graphs for information modeling has attracted interest in recent years. In recommender systems, items and users can be mapped and integrated into the knowledge graph, which can represent more links and relationships between users and items. Constraint-based recommender systems are based on the idea of explicitly exploiting deep recommendation knowledge through constraints to identify relevant recommendations. When combined with knowledge graphs, a constraint-based recommender system gains several benefits in terms of constraint sets. In this paper, we investigate and propose the construction of a constraint-based recommender system via RDF knowledge graphs applied to the vehicle purchase/sale domain. The results of our experiments show that the proposed approach is able to efficiently identify recommendations in accordance with user preferences.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"11 1","pages":"849-854"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Constraint-based Recommender System via RDF Knowledge Graphs\",\"authors\":\"Ngoc Luyen Le, Marie-Hélène Abel, Philippe Gouspillou\",\"doi\":\"10.1109/CSCWD57460.2023.10152701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graphs, represented in RDF, are able to model entities and their relations by means of ontologies. The use of knowledge graphs for information modeling has attracted interest in recent years. In recommender systems, items and users can be mapped and integrated into the knowledge graph, which can represent more links and relationships between users and items. Constraint-based recommender systems are based on the idea of explicitly exploiting deep recommendation knowledge through constraints to identify relevant recommendations. When combined with knowledge graphs, a constraint-based recommender system gains several benefits in terms of constraint sets. In this paper, we investigate and propose the construction of a constraint-based recommender system via RDF knowledge graphs applied to the vehicle purchase/sale domain. The results of our experiments show that the proposed approach is able to efficiently identify recommendations in accordance with user preferences.\",\"PeriodicalId\":51008,\"journal\":{\"name\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"volume\":\"11 1\",\"pages\":\"849-854\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCWD57460.2023.10152701\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152701","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

以RDF表示的知识图能够通过本体对实体及其关系进行建模。近年来,知识图在信息建模中的使用引起了人们的兴趣。在推荐系统中,可以将商品和用户映射并集成到知识图中,知识图可以表示用户和商品之间更多的链接和关系。基于约束的推荐系统是基于通过约束明确地利用深度推荐知识来识别相关推荐的思想。当与知识图相结合时,基于约束的推荐系统在约束集方面获得了一些好处。在本文中,我们研究并提出了一个基于约束的基于RDF知识图的推荐系统的构建,该系统应用于车辆购销领域。实验结果表明,本文提出的方法能够有效地根据用户偏好识别推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Constraint-based Recommender System via RDF Knowledge Graphs
Knowledge graphs, represented in RDF, are able to model entities and their relations by means of ontologies. The use of knowledge graphs for information modeling has attracted interest in recent years. In recommender systems, items and users can be mapped and integrated into the knowledge graph, which can represent more links and relationships between users and items. Constraint-based recommender systems are based on the idea of explicitly exploiting deep recommendation knowledge through constraints to identify relevant recommendations. When combined with knowledge graphs, a constraint-based recommender system gains several benefits in terms of constraint sets. In this paper, we investigate and propose the construction of a constraint-based recommender system via RDF knowledge graphs applied to the vehicle purchase/sale domain. The results of our experiments show that the proposed approach is able to efficiently identify recommendations in accordance with user preferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
期刊最新文献
Text-based Patient – Doctor Discourse Online And Patients’ Experiences of Empathy Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion Data as Relation: Ontological Trouble in the Data-Driven Public Administration The Avatar Facial Expression Reenactment Method in the Metaverse based on Overall-Local Optical-Flow Estimation and Illumination Difference Investigating Author Research Relatedness through Crowdsourcing: A Replication Study on MTurk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1