Lp损失函数下多元定位的仿射等变推理

A. Dürre, D. Paindaveine
{"title":"Lp损失函数下多元定位的仿射等变推理","authors":"A. Dürre, D. Paindaveine","doi":"10.1214/22-aos2199","DOIUrl":null,"url":null,"abstract":"We consider the fundamental problem of estimating the location of a d -variate probability measure under an L p loss function. The naive estimator, that minimizes the usual empirical L p risk, has a known asymptotic behavior but suffers from several deficiencies for p (cid:2)= 2, the most important one being the lack of equivariance under general affine transformations. In this work, we introduce a collection of L p location estimators ˆ μ p,(cid:2)n that minimize the size of suitable (cid:2) -dimensional data-based simplices. For (cid:2) = 1, these estimators reduce to the naive ones, whereas, for (cid:2) = d , they are equivariant under affine transformations. Irrespective of (cid:2) , these estimators reduce to the sample mean for p = 2, whereas for p = 1, the estimators provide the well-known spatial median and Oja median for (cid:2) = 1 and (cid:2) = d , respectively. Under very mild assumptions, we derive an explicit Bahadur representation result for ˆ μ p,(cid:2)n and establish asymptotic normality. We prove that, quite remarkably, the asymptotic behavior of the estimators does not depend on (cid:2) under spherical symmetry, so that the affine equivariance for (cid:2) = d is achieved at no cost in terms of efficiency. To allow for large sample size n and/or large dimension d , we introduce a version of our estimators relying on incomplete U-statistics. Under a centro-symmetry assumption, we also define companion tests φ p,(cid:2)n for the problem of testing the null hypothesis that the location μ of the underlying probability measure coincides with a given location μ 0 . For any p , affine invariance is achieved for (cid:2) = d . For any (cid:2) and p , we derive explicit expressions for the asymptotic power of these tests under contiguous local alternatives, which reveals that asymptotic relative efficiencies with respect to traditional parametric Gaussian procedures for hypothesis testing coincide with those obtained for point estimation. We illustrate finite-sample relevance of our asymptotic results through Monte Carlo exercises and also treat a real data example.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Affine-equivariant inference for multivariate location under Lp loss functions\",\"authors\":\"A. Dürre, D. Paindaveine\",\"doi\":\"10.1214/22-aos2199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the fundamental problem of estimating the location of a d -variate probability measure under an L p loss function. The naive estimator, that minimizes the usual empirical L p risk, has a known asymptotic behavior but suffers from several deficiencies for p (cid:2)= 2, the most important one being the lack of equivariance under general affine transformations. In this work, we introduce a collection of L p location estimators ˆ μ p,(cid:2)n that minimize the size of suitable (cid:2) -dimensional data-based simplices. For (cid:2) = 1, these estimators reduce to the naive ones, whereas, for (cid:2) = d , they are equivariant under affine transformations. Irrespective of (cid:2) , these estimators reduce to the sample mean for p = 2, whereas for p = 1, the estimators provide the well-known spatial median and Oja median for (cid:2) = 1 and (cid:2) = d , respectively. Under very mild assumptions, we derive an explicit Bahadur representation result for ˆ μ p,(cid:2)n and establish asymptotic normality. We prove that, quite remarkably, the asymptotic behavior of the estimators does not depend on (cid:2) under spherical symmetry, so that the affine equivariance for (cid:2) = d is achieved at no cost in terms of efficiency. To allow for large sample size n and/or large dimension d , we introduce a version of our estimators relying on incomplete U-statistics. Under a centro-symmetry assumption, we also define companion tests φ p,(cid:2)n for the problem of testing the null hypothesis that the location μ of the underlying probability measure coincides with a given location μ 0 . For any p , affine invariance is achieved for (cid:2) = d . For any (cid:2) and p , we derive explicit expressions for the asymptotic power of these tests under contiguous local alternatives, which reveals that asymptotic relative efficiencies with respect to traditional parametric Gaussian procedures for hypothesis testing coincide with those obtained for point estimation. We illustrate finite-sample relevance of our asymptotic results through Monte Carlo exercises and also treat a real data example.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aos2199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了在L p损失函数下估计d变量概率测度的位置的基本问题。使通常的经验lp风险最小化的朴素估计量具有已知的渐近行为,但在p (cid:2)= 2时存在一些缺陷,最重要的是在一般仿射变换下缺乏等方差。在这项工作中,我们引入了一组L p位置估计器(μ p,(cid:2)n,它们最小化了合适的(cid:2)维基于数据的简单体的大小。当(cid:2) = 1时,这些估计量约化为朴素估计量,而当(cid:2) = d时,它们在仿射变换下是等变的。无论(cid:2)如何,这些估计量在p = 2时降为样本均值,而在p = 1时,估计量分别在(cid:2) = 1和(cid:2) = d时提供众所周知的空间中位数和Oja中位数。在非常温和的假设下,我们得到了一个显式的μ p,(cid:2)n的Bahadur表示结果,并建立了渐近正态性。我们非常显著地证明了在球对称下估计量的渐近性不依赖于(cid:2),从而在不牺牲效率的情况下实现了(cid:2) = d的仿射等方差。为了允许大样本量n和/或大维度d,我们引入了依赖于不完全u统计量的估计器版本。在中心对称假设下,我们还定义了伴生检验φ p,(cid:2)n,用于检验底层概率测度的位置μ与给定位置μ 0重合的零假设问题。对于任意p, (cid:2) = d实现仿射不变性。对于任意(cid:2)和p,我们导出了这些检验在连续局部选择下的渐近幂的显式表达式,这表明关于传统参数高斯过程的假设检验的渐近相对效率与点估计的渐近相对效率是一致的。我们通过蒙特卡罗练习说明了我们的渐近结果的有限样本相关性,并处理了一个真实的数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Affine-equivariant inference for multivariate location under Lp loss functions
We consider the fundamental problem of estimating the location of a d -variate probability measure under an L p loss function. The naive estimator, that minimizes the usual empirical L p risk, has a known asymptotic behavior but suffers from several deficiencies for p (cid:2)= 2, the most important one being the lack of equivariance under general affine transformations. In this work, we introduce a collection of L p location estimators ˆ μ p,(cid:2)n that minimize the size of suitable (cid:2) -dimensional data-based simplices. For (cid:2) = 1, these estimators reduce to the naive ones, whereas, for (cid:2) = d , they are equivariant under affine transformations. Irrespective of (cid:2) , these estimators reduce to the sample mean for p = 2, whereas for p = 1, the estimators provide the well-known spatial median and Oja median for (cid:2) = 1 and (cid:2) = d , respectively. Under very mild assumptions, we derive an explicit Bahadur representation result for ˆ μ p,(cid:2)n and establish asymptotic normality. We prove that, quite remarkably, the asymptotic behavior of the estimators does not depend on (cid:2) under spherical symmetry, so that the affine equivariance for (cid:2) = d is achieved at no cost in terms of efficiency. To allow for large sample size n and/or large dimension d , we introduce a version of our estimators relying on incomplete U-statistics. Under a centro-symmetry assumption, we also define companion tests φ p,(cid:2)n for the problem of testing the null hypothesis that the location μ of the underlying probability measure coincides with a given location μ 0 . For any p , affine invariance is achieved for (cid:2) = d . For any (cid:2) and p , we derive explicit expressions for the asymptotic power of these tests under contiguous local alternatives, which reveals that asymptotic relative efficiencies with respect to traditional parametric Gaussian procedures for hypothesis testing coincide with those obtained for point estimation. We illustrate finite-sample relevance of our asymptotic results through Monte Carlo exercises and also treat a real data example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1