S. Ture, Shruthy D. Pattathil, Bertrand Zing Zing, V. Abbaraju
{"title":"聚苯胺银复合材料对一些重要硝基芳香族化合物的荧光传感","authors":"S. Ture, Shruthy D. Pattathil, Bertrand Zing Zing, V. Abbaraju","doi":"10.3390/micro3010016","DOIUrl":null,"url":null,"abstract":"Conducting polymers (CPs) have contributed significantly to the field of sensing. The sensing of nitroaromatic compounds by fluorescence has recently gained more attention due to its sensitivity and selectivity. In this study, polyaniline (PANI) was functionalized by forming a polyaniline-Ag (PANI-Ag) composite and used as a fluorophore for sensing. The nitro groups present in nitroaromatic compounds (NACs) such as 2,4,6-trinitrophenol (picric acid-TNP) and Dinitrobenzene (DNB) act as electron-accepting molecules and quench the fluorescence of polymer chains by showing an amplified quenching effect in which trace amounts of electron-accepting NACs quench emissions of several fluorophore units. The PANI-Ag composite synthesized by interfacial polymerization was analyzed using UV-vis spectroscopy and Fourier-transform infrared (FTIR) spectroscopy for determination of molecular structure; X-ray powder diffraction (XRD) and scanning electron microscopy (SEM/EDAX) for its morphology, which is cubic crystalline silver; and thermogravimetric analysis (TGA) for the thermal stability. The fluorescence quenching mechanism was deduced from the Stern–Volmer plot. The quenching constant value (Ksv) obtained from the Stern–Volmer (S–V) plot was found to be Ksv = 0.1037 × 106 M−1 (TNP) and Ksv = 0.161 × 104 M−1 (DNB). The plot shows a single mechanism with formation of an exciplex complex for TNP with a photoinduced electron transfer (PET) mechanism. The limit of detection (LOD) is found to be TNP = 5.58 × 10−7 M, whereas DNB = 23.30 × 10−6 M shows that the PANI-Ag composite is a potential fluorophore for sensing of nitroaromatic compounds in trace levels.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"50 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fluorescence Sensing of Some Important Nitroaromatic Compounds by Using Polyaniline Ag Composite\",\"authors\":\"S. Ture, Shruthy D. Pattathil, Bertrand Zing Zing, V. Abbaraju\",\"doi\":\"10.3390/micro3010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conducting polymers (CPs) have contributed significantly to the field of sensing. The sensing of nitroaromatic compounds by fluorescence has recently gained more attention due to its sensitivity and selectivity. In this study, polyaniline (PANI) was functionalized by forming a polyaniline-Ag (PANI-Ag) composite and used as a fluorophore for sensing. The nitro groups present in nitroaromatic compounds (NACs) such as 2,4,6-trinitrophenol (picric acid-TNP) and Dinitrobenzene (DNB) act as electron-accepting molecules and quench the fluorescence of polymer chains by showing an amplified quenching effect in which trace amounts of electron-accepting NACs quench emissions of several fluorophore units. The PANI-Ag composite synthesized by interfacial polymerization was analyzed using UV-vis spectroscopy and Fourier-transform infrared (FTIR) spectroscopy for determination of molecular structure; X-ray powder diffraction (XRD) and scanning electron microscopy (SEM/EDAX) for its morphology, which is cubic crystalline silver; and thermogravimetric analysis (TGA) for the thermal stability. The fluorescence quenching mechanism was deduced from the Stern–Volmer plot. The quenching constant value (Ksv) obtained from the Stern–Volmer (S–V) plot was found to be Ksv = 0.1037 × 106 M−1 (TNP) and Ksv = 0.161 × 104 M−1 (DNB). The plot shows a single mechanism with formation of an exciplex complex for TNP with a photoinduced electron transfer (PET) mechanism. The limit of detection (LOD) is found to be TNP = 5.58 × 10−7 M, whereas DNB = 23.30 × 10−6 M shows that the PANI-Ag composite is a potential fluorophore for sensing of nitroaromatic compounds in trace levels.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3010016\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3010016","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fluorescence Sensing of Some Important Nitroaromatic Compounds by Using Polyaniline Ag Composite
Conducting polymers (CPs) have contributed significantly to the field of sensing. The sensing of nitroaromatic compounds by fluorescence has recently gained more attention due to its sensitivity and selectivity. In this study, polyaniline (PANI) was functionalized by forming a polyaniline-Ag (PANI-Ag) composite and used as a fluorophore for sensing. The nitro groups present in nitroaromatic compounds (NACs) such as 2,4,6-trinitrophenol (picric acid-TNP) and Dinitrobenzene (DNB) act as electron-accepting molecules and quench the fluorescence of polymer chains by showing an amplified quenching effect in which trace amounts of electron-accepting NACs quench emissions of several fluorophore units. The PANI-Ag composite synthesized by interfacial polymerization was analyzed using UV-vis spectroscopy and Fourier-transform infrared (FTIR) spectroscopy for determination of molecular structure; X-ray powder diffraction (XRD) and scanning electron microscopy (SEM/EDAX) for its morphology, which is cubic crystalline silver; and thermogravimetric analysis (TGA) for the thermal stability. The fluorescence quenching mechanism was deduced from the Stern–Volmer plot. The quenching constant value (Ksv) obtained from the Stern–Volmer (S–V) plot was found to be Ksv = 0.1037 × 106 M−1 (TNP) and Ksv = 0.161 × 104 M−1 (DNB). The plot shows a single mechanism with formation of an exciplex complex for TNP with a photoinduced electron transfer (PET) mechanism. The limit of detection (LOD) is found to be TNP = 5.58 × 10−7 M, whereas DNB = 23.30 × 10−6 M shows that the PANI-Ag composite is a potential fluorophore for sensing of nitroaromatic compounds in trace levels.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics