一些碳水合物和取代苯的C1s核心电子结合能的精确计算

Yuji Takahata , Alberto dos Santos Marques , Rogério Custodio
{"title":"一些碳水合物和取代苯的C1s核心电子结合能的精确计算","authors":"Yuji Takahata ,&nbsp;Alberto dos Santos Marques ,&nbsp;Rogério Custodio","doi":"10.1016/j.theochem.2010.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>Approaches, using density functional theory (DFT), to calculate accurate adiabatic and vertical carbon 1s core electron binding energies (CEBE) of some alkanes, alkenes, alkynes and methyl- and fluorine-substituted benzenes are investigated.</p><p>The approaches tested can be schematized as follows; <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mtext>KS</mtext></mrow></msub><mo>(</mo><mtext>PW</mtext><mn>86</mn><mo>×</mo><mo>-</mo><mtext>PW</mtext><mn>91</mn><mtext>c</mtext><mo>/</mo><mtext>TZP</mtext><mo>+</mo><msub><mrow><mi>C</mi></mrow><mrow><mtext>rel</mtext></mrow></msub><mo>)</mo><mo>/</mo><mo>/</mo><mtext>DFT</mtext><mo>(</mo><mtext>PW</mtext><mn>86</mn><mo>×</mo><mo>-</mo><mtext>PW</mtext><mn>91</mn><mi>c</mi><mo>/</mo><mtext>TZP</mtext><mo>)</mo></mrow></math></span> where Δ<em>E</em><sub>KS</sub> is the difference between the Kohn–Sham total energy of the core–hole cation M<sup>+</sup>, <em>E</em><sub>KS</sub>(M<sup>+</sup>), and the Kohn–Sham total energy of the neutral ground state molecule M, <em>E</em><sub>KS</sub>(M). The geometry of M is optimized with DFT(PW86x-PW91c/TZP). For the adiabatic C1s CEBE calculation, the geometry of M<sup>+</sup> is optimized whereas, for the vertical C1s CEBE calculation, the geometry of M<sup>+</sup> is identical to the neutral ground state molecule M. <em>C</em><sub>rel</sub> represents relativistic corrections. We tested two cases; <em>C</em><sub>rel</sub> <!-->=<!--> <!-->0<!--> <!-->eV, and <em>C</em><sub>rel</sub> <!-->=<!--> <!-->0.05<!--> <!-->eV. The relativistic correction turned out to be not necessary, because inclusion of the relativistic correction always increased deviation. The current results suggest a systematic error in the calculations that is fortuitously offset by the neglect of relativistic effects. The best approach resulted in average absolute deviations (maximum absolute deviations) from adiabatic experimental values of 0.045<!--> <!-->eV (0.130<!--> <!-->eV) for calculations of the corresponding C1s CEBE of the alkanes, alkenes, and substituted benzenes for 120 cases. The absolute uncertainty in the experimental measurements is estimated to be 0.03<!--> <!-->eV. The average absolute deviation of 0.045<!--> <!-->eV is close to the magnitude of the experimental uncertainty. Agreement between theory and experiment is better for adiabatic C1s CEBE than for vertical C1s CEBE.</p></div>","PeriodicalId":16419,"journal":{"name":"Journal of Molecular Structure-theochem","volume":"959 1","pages":"Pages 106-112"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.theochem.2010.08.014","citationCount":"8","resultStr":"{\"title\":\"Accurate calculation of C1s core electron binding energies of some carbon hydrates and substituted benzenes\",\"authors\":\"Yuji Takahata ,&nbsp;Alberto dos Santos Marques ,&nbsp;Rogério Custodio\",\"doi\":\"10.1016/j.theochem.2010.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Approaches, using density functional theory (DFT), to calculate accurate adiabatic and vertical carbon 1s core electron binding energies (CEBE) of some alkanes, alkenes, alkynes and methyl- and fluorine-substituted benzenes are investigated.</p><p>The approaches tested can be schematized as follows; <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mtext>KS</mtext></mrow></msub><mo>(</mo><mtext>PW</mtext><mn>86</mn><mo>×</mo><mo>-</mo><mtext>PW</mtext><mn>91</mn><mtext>c</mtext><mo>/</mo><mtext>TZP</mtext><mo>+</mo><msub><mrow><mi>C</mi></mrow><mrow><mtext>rel</mtext></mrow></msub><mo>)</mo><mo>/</mo><mo>/</mo><mtext>DFT</mtext><mo>(</mo><mtext>PW</mtext><mn>86</mn><mo>×</mo><mo>-</mo><mtext>PW</mtext><mn>91</mn><mi>c</mi><mo>/</mo><mtext>TZP</mtext><mo>)</mo></mrow></math></span> where Δ<em>E</em><sub>KS</sub> is the difference between the Kohn–Sham total energy of the core–hole cation M<sup>+</sup>, <em>E</em><sub>KS</sub>(M<sup>+</sup>), and the Kohn–Sham total energy of the neutral ground state molecule M, <em>E</em><sub>KS</sub>(M). The geometry of M is optimized with DFT(PW86x-PW91c/TZP). For the adiabatic C1s CEBE calculation, the geometry of M<sup>+</sup> is optimized whereas, for the vertical C1s CEBE calculation, the geometry of M<sup>+</sup> is identical to the neutral ground state molecule M. <em>C</em><sub>rel</sub> represents relativistic corrections. We tested two cases; <em>C</em><sub>rel</sub> <!-->=<!--> <!-->0<!--> <!-->eV, and <em>C</em><sub>rel</sub> <!-->=<!--> <!-->0.05<!--> <!-->eV. The relativistic correction turned out to be not necessary, because inclusion of the relativistic correction always increased deviation. The current results suggest a systematic error in the calculations that is fortuitously offset by the neglect of relativistic effects. The best approach resulted in average absolute deviations (maximum absolute deviations) from adiabatic experimental values of 0.045<!--> <!-->eV (0.130<!--> <!-->eV) for calculations of the corresponding C1s CEBE of the alkanes, alkenes, and substituted benzenes for 120 cases. The absolute uncertainty in the experimental measurements is estimated to be 0.03<!--> <!-->eV. The average absolute deviation of 0.045<!--> <!-->eV is close to the magnitude of the experimental uncertainty. Agreement between theory and experiment is better for adiabatic C1s CEBE than for vertical C1s CEBE.</p></div>\",\"PeriodicalId\":16419,\"journal\":{\"name\":\"Journal of Molecular Structure-theochem\",\"volume\":\"959 1\",\"pages\":\"Pages 106-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.theochem.2010.08.014\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure-theochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166128010005348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure-theochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166128010005348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了用密度泛函理论(DFT)精确计算某些烷烃、烯烃、炔烃、甲基和氟取代苯的绝热和垂直碳1s核电子结合能(CEBE)的方法。所测试的方法可以概括如下:ΔEKS(PW86×-PW91c/TZP+Crel)//DFT(PW86×-PW91c/TZP),其中ΔEKS为核空穴阳离子M+, EKS(M+)的Kohn-Sham总能量与中性基态分子M, EKS(M)的Kohn-Sham总能量之差。用DFT(PW86x-PW91c/TZP)优化M的几何形状。对于绝热C1s CEBE计算,M+的几何结构进行了优化,而对于垂直C1s CEBE计算,M+的几何结构与中性基态分子M相同,Crel表示相对论修正。我们测试了两个案例;Crel = 0 eV, Crel = 0.05 eV。相对论性修正原来是不必要的,因为包含相对论性修正总是会增加偏差。目前的结果表明,计算中存在系统误差,而忽略了相对论效应,这种误差恰好被抵消了。对于120种烷烃、烯烃和取代苯的C1s CEBE计算,最佳方法与绝热实验值的平均绝对偏差(最大绝对偏差)为0.045 eV (0.130 eV)。实验测量的绝对不确定度估计为0.03 eV。平均绝对偏差为0.045 eV,接近实验不确定度的大小。绝热C1s - CEBE比垂直C1s - CEBE理论与实验的一致性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate calculation of C1s core electron binding energies of some carbon hydrates and substituted benzenes

Approaches, using density functional theory (DFT), to calculate accurate adiabatic and vertical carbon 1s core electron binding energies (CEBE) of some alkanes, alkenes, alkynes and methyl- and fluorine-substituted benzenes are investigated.

The approaches tested can be schematized as follows; ΔEKS(PW86×-PW91c/TZP+Crel)//DFT(PW86×-PW91c/TZP) where ΔEKS is the difference between the Kohn–Sham total energy of the core–hole cation M+, EKS(M+), and the Kohn–Sham total energy of the neutral ground state molecule M, EKS(M). The geometry of M is optimized with DFT(PW86x-PW91c/TZP). For the adiabatic C1s CEBE calculation, the geometry of M+ is optimized whereas, for the vertical C1s CEBE calculation, the geometry of M+ is identical to the neutral ground state molecule M. Crel represents relativistic corrections. We tested two cases; Crel = 0 eV, and Crel = 0.05 eV. The relativistic correction turned out to be not necessary, because inclusion of the relativistic correction always increased deviation. The current results suggest a systematic error in the calculations that is fortuitously offset by the neglect of relativistic effects. The best approach resulted in average absolute deviations (maximum absolute deviations) from adiabatic experimental values of 0.045 eV (0.130 eV) for calculations of the corresponding C1s CEBE of the alkanes, alkenes, and substituted benzenes for 120 cases. The absolute uncertainty in the experimental measurements is estimated to be 0.03 eV. The average absolute deviation of 0.045 eV is close to the magnitude of the experimental uncertainty. Agreement between theory and experiment is better for adiabatic C1s CEBE than for vertical C1s CEBE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊最新文献
Author Index Subject Index Editorial Board The kernel energy method: Construction of 3- and 4-tuple kernels from a list of double kernel interactions The electronic properties of a homoleptic bisphosphine Cu(I) complex: A joint theoretical and experimental insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1