{"title":"评估机器学习公平性的规范原则","authors":"D. Leben","doi":"10.1145/3375627.3375808","DOIUrl":null,"url":null,"abstract":"There are many incompatible ways to measure fair outcomes for machine learning algorithms. The goal of this paper is to characterize rates of success and error across protected groups (race, gender, sexual orientation) as a distribution problem, and describe the possible solutions to this problem according to different normative principles from moral and political philosophy. These normative principles are based on various competing attributes within a distribution problem: intentions, compensation, desert, consent, and consequences. Each principle will be applied to a sample risk-assessment classifier to demonstrate the philosophical arguments underlying different sets of fairness metrics.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Normative Principles for Evaluating Fairness in Machine Learning\",\"authors\":\"D. Leben\",\"doi\":\"10.1145/3375627.3375808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many incompatible ways to measure fair outcomes for machine learning algorithms. The goal of this paper is to characterize rates of success and error across protected groups (race, gender, sexual orientation) as a distribution problem, and describe the possible solutions to this problem according to different normative principles from moral and political philosophy. These normative principles are based on various competing attributes within a distribution problem: intentions, compensation, desert, consent, and consequences. Each principle will be applied to a sample risk-assessment classifier to demonstrate the philosophical arguments underlying different sets of fairness metrics.\",\"PeriodicalId\":93612,\"journal\":{\"name\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375627.3375808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normative Principles for Evaluating Fairness in Machine Learning
There are many incompatible ways to measure fair outcomes for machine learning algorithms. The goal of this paper is to characterize rates of success and error across protected groups (race, gender, sexual orientation) as a distribution problem, and describe the possible solutions to this problem according to different normative principles from moral and political philosophy. These normative principles are based on various competing attributes within a distribution problem: intentions, compensation, desert, consent, and consequences. Each principle will be applied to a sample risk-assessment classifier to demonstrate the philosophical arguments underlying different sets of fairness metrics.