{"title":"FactGen:基于事实感知预训练和对比排序微调的忠实文本生成","authors":"Zhibin Lan, Wei Li, Jinsong Su, Xinyan Xiao, Jiachen Liu, Wenhao Wu, Yajuan Lyu","doi":"10.1613/jair.1.14267","DOIUrl":null,"url":null,"abstract":"Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"38 1","pages":"1281-1303"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FactGen: Faithful Text Generation by Factuality-aware Pre-training and Contrastive Ranking Fine-tuning\",\"authors\":\"Zhibin Lan, Wei Li, Jinsong Su, Xinyan Xiao, Jiachen Liu, Wenhao Wu, Yajuan Lyu\",\"doi\":\"10.1613/jair.1.14267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"38 1\",\"pages\":\"1281-1303\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14267\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14267","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FactGen: Faithful Text Generation by Factuality-aware Pre-training and Contrastive Ranking Fine-tuning
Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.