FactGen:基于事实感知预训练和对比排序微调的忠实文本生成

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence Research Pub Date : 2023-04-27 DOI:10.1613/jair.1.14267
Zhibin Lan, Wei Li, Jinsong Su, Xinyan Xiao, Jiachen Liu, Wenhao Wu, Yajuan Lyu
{"title":"FactGen:基于事实感知预训练和对比排序微调的忠实文本生成","authors":"Zhibin Lan, Wei Li, Jinsong Su, Xinyan Xiao, Jiachen Liu, Wenhao Wu, Yajuan Lyu","doi":"10.1613/jair.1.14267","DOIUrl":null,"url":null,"abstract":"Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"38 1","pages":"1281-1303"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FactGen: Faithful Text Generation by Factuality-aware Pre-training and Contrastive Ranking Fine-tuning\",\"authors\":\"Zhibin Lan, Wei Li, Jinsong Su, Xinyan Xiao, Jiachen Liu, Wenhao Wu, Yajuan Lyu\",\"doi\":\"10.1613/jair.1.14267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"38 1\",\"pages\":\"1281-1303\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14267\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14267","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

条件文本生成的目的是生成连贯流畅、忠实于源文本的目标文本。尽管预训练模型已经取得了令人鼓舞的结果,但它们仍然存在关键的事实性问题。为了解决这个问题,我们提出了一个事实感知的预训练微调框架FactGen,该框架在两个训练阶段充分考虑了事实性。具体而言,在预训练阶段,我们利用自然语言推理模型构建源文本所包含的目标文本,从而实现更符合事实的预训练目标。然后,在微调阶段,我们进一步引入对比排名损失,以鼓励模型以更高的概率生成事实一致的文本。在三个条件文本生成任务上的大量实验证明了我们的训练框架的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FactGen: Faithful Text Generation by Factuality-aware Pre-training and Contrastive Ranking Fine-tuning
Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
期刊最新文献
Collective Belief Revision Competitive Equilibria with a Constant Number of Chores Improving Resource Allocations by Sharing in Pairs A General Model for Aggregating Annotations Across Simple, Complex, and Multi-Object Annotation Tasks Asymptotics of K-Fold Cross Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1