乌克兰森林草原灌浆过程中自然干旱条件下冬小麦茎秆段的储存能力

IF 0.8 Q2 Environmental Science Biosystems Diversity Pub Date : 2022-05-03 DOI:10.15421/012217
V. Morgun, M. Tarasiuk, G. Priadkina, О. О. Stasik
{"title":"乌克兰森林草原灌浆过程中自然干旱条件下冬小麦茎秆段的储存能力","authors":"V. Morgun, M. Tarasiuk, G. Priadkina, О. О. Stasik","doi":"10.15421/012217","DOIUrl":null,"url":null,"abstract":"Drought is a major abiotic factor adversely affecting wheat productivity. Water deficit reduces significantly photosynthesis and hence the remobilization of stored assimilate reserves from the stem becomes important sources for grain filling. We assessed the ability of different stem internodes and leaf sheaths to deposit and remobilize reserve assimilates as well as their role in grain yield formation in 6 winter wheat varieties under drought conditions during the period of grain filling. The dry weight and content of water-soluble carbohydrates in the dry matter of stem internodes and leaf sheaths of the main shoot was determined at anthesis, the beginning of milk ripeness and full grain ripeness. The total amount of water-soluble carbohydrates in stem segments was calculated as the product of their specific content in the dry matter of the stem segment and its mass. The amount of remobilized dry matter and water-soluble carbohydrates for each segment was estimated as the difference between the appropriate values at anthesis or milk ripeness and full ripeness. The maximum accumulation of water-soluble carbohydrates in the stem was reached at early milk ripeness. The most productive varieties Kyivska 17 and Horodnytsia had the largest amount of remobilized water-soluble carbohydrates in all internodes. Depositing capacity of the second and third (counting from the top) internodes was higher compared to others and has a significant effect on the grain productivity of wheat varieties studied. Despite significant variability and strong genotype x year interaction of the relationships between depositing capacity traits of different stem segments and grain productivity, mainly tight correlations were found for dry matter and total water-soluble carbohydrates accumulation and remobilization in second and third internodes with yield and grain weight per spike. The obtained data suggests that the remobilization of deposited water-soluble carbohydrates is an important factor contributing to the filling of winter wheat grain in arid conditions and more detailed studies of relationships of depositing capacity of individual stem segments with yield can be useful for development of breeding tools for further genetic yield improvement.","PeriodicalId":44107,"journal":{"name":"Biosystems Diversity","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Depositing capacity of winter wheat stem segments under natural drought during grain filling in Ukrainian forest steppe conditions\",\"authors\":\"V. Morgun, M. Tarasiuk, G. Priadkina, О. О. Stasik\",\"doi\":\"10.15421/012217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought is a major abiotic factor adversely affecting wheat productivity. Water deficit reduces significantly photosynthesis and hence the remobilization of stored assimilate reserves from the stem becomes important sources for grain filling. We assessed the ability of different stem internodes and leaf sheaths to deposit and remobilize reserve assimilates as well as their role in grain yield formation in 6 winter wheat varieties under drought conditions during the period of grain filling. The dry weight and content of water-soluble carbohydrates in the dry matter of stem internodes and leaf sheaths of the main shoot was determined at anthesis, the beginning of milk ripeness and full grain ripeness. The total amount of water-soluble carbohydrates in stem segments was calculated as the product of their specific content in the dry matter of the stem segment and its mass. The amount of remobilized dry matter and water-soluble carbohydrates for each segment was estimated as the difference between the appropriate values at anthesis or milk ripeness and full ripeness. The maximum accumulation of water-soluble carbohydrates in the stem was reached at early milk ripeness. The most productive varieties Kyivska 17 and Horodnytsia had the largest amount of remobilized water-soluble carbohydrates in all internodes. Depositing capacity of the second and third (counting from the top) internodes was higher compared to others and has a significant effect on the grain productivity of wheat varieties studied. Despite significant variability and strong genotype x year interaction of the relationships between depositing capacity traits of different stem segments and grain productivity, mainly tight correlations were found for dry matter and total water-soluble carbohydrates accumulation and remobilization in second and third internodes with yield and grain weight per spike. The obtained data suggests that the remobilization of deposited water-soluble carbohydrates is an important factor contributing to the filling of winter wheat grain in arid conditions and more detailed studies of relationships of depositing capacity of individual stem segments with yield can be useful for development of breeding tools for further genetic yield improvement.\",\"PeriodicalId\":44107,\"journal\":{\"name\":\"Biosystems Diversity\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Diversity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/012217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Diversity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/012217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

干旱是影响小麦产量的主要非生物因素。水分亏缺显著降低了光合作用,因此茎部储存的同化物储备的再动员成为籽粒灌浆的重要来源。研究了干旱条件下6个冬小麦品种灌浆期不同茎节间和叶鞘对储备同化物质的储存和再动员能力及其在籽粒产量形成中的作用。测定了主茎节间和叶鞘干物质的干重和水溶性碳水化合物含量,测定时间分别为花期、乳熟初期和全粒成熟时期。茎段中水溶性碳水化合物的总量是其在茎段干物质中的比含量与其质量的乘积。每节段的再活化干物质和水溶性碳水化合物的量以开花或乳熟与完全成熟时的适当值之差来估计。茎中水溶性碳水化合物的积累在乳成熟早期达到最大值。产量最高的品种基夫卡17和霍洛尼夏在各节间的再活化水溶性碳水化合物量最大。第二节间和第三节间(从上数起)的贮物能力高于其他节间,对所研究小麦品种的籽粒产量有显著影响。不同茎秆段的储存能力性状与产量的关系存在显著的变异和较强的基因型x年交互作用,但第二和第三节间的干物质和总水溶性碳水化合物积累和再动员与产量和每穗粒重的关系主要是密切相关的。研究结果表明,在干旱条件下,水溶性碳水化合物的再迁移是冬小麦籽粒灌浆的重要因素,进一步深入研究茎秆各节沉积能力与产量的关系,有助于开发育种工具,进一步提高遗传产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depositing capacity of winter wheat stem segments under natural drought during grain filling in Ukrainian forest steppe conditions
Drought is a major abiotic factor adversely affecting wheat productivity. Water deficit reduces significantly photosynthesis and hence the remobilization of stored assimilate reserves from the stem becomes important sources for grain filling. We assessed the ability of different stem internodes and leaf sheaths to deposit and remobilize reserve assimilates as well as their role in grain yield formation in 6 winter wheat varieties under drought conditions during the period of grain filling. The dry weight and content of water-soluble carbohydrates in the dry matter of stem internodes and leaf sheaths of the main shoot was determined at anthesis, the beginning of milk ripeness and full grain ripeness. The total amount of water-soluble carbohydrates in stem segments was calculated as the product of their specific content in the dry matter of the stem segment and its mass. The amount of remobilized dry matter and water-soluble carbohydrates for each segment was estimated as the difference between the appropriate values at anthesis or milk ripeness and full ripeness. The maximum accumulation of water-soluble carbohydrates in the stem was reached at early milk ripeness. The most productive varieties Kyivska 17 and Horodnytsia had the largest amount of remobilized water-soluble carbohydrates in all internodes. Depositing capacity of the second and third (counting from the top) internodes was higher compared to others and has a significant effect on the grain productivity of wheat varieties studied. Despite significant variability and strong genotype x year interaction of the relationships between depositing capacity traits of different stem segments and grain productivity, mainly tight correlations were found for dry matter and total water-soluble carbohydrates accumulation and remobilization in second and third internodes with yield and grain weight per spike. The obtained data suggests that the remobilization of deposited water-soluble carbohydrates is an important factor contributing to the filling of winter wheat grain in arid conditions and more detailed studies of relationships of depositing capacity of individual stem segments with yield can be useful for development of breeding tools for further genetic yield improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Comprehensive review of morphological adaptations and conservation strategies of cactiform succulents: A case study of Euphorbia species in arid ecosystems Body-weight gains in Blaberus craniifer cockroaches and the intensity of their infection with gregarines and nematodes Antifungal activity of the endophytic Aspergillus against Candida albicans Sensitivity of non-target groups of invertebrates to cypermethrin Dependence of some physiological indicators of generative and vegetative organs of Sambucus nigra on habitat conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1