核组态相互作用计算的混合特征解

Abdullah Alperen, H. Aktulga, Pieter Maris, Chao Yang
{"title":"核组态相互作用计算的混合特征解","authors":"Abdullah Alperen, H. Aktulga, Pieter Maris, Chao Yang","doi":"10.48550/arXiv.2305.15552","DOIUrl":null,"url":null,"abstract":"We examine and compare several iterative methods for solving large-scale eigenvalue problems arising from nuclear structure calculations. In particular, we discuss the possibility of using block Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has several desirable properties. We will describe a few practical issues that need to be addressed to make the hybrid solver efficient and robust.","PeriodicalId":10679,"journal":{"name":"Comput. Phys. Commun.","volume":"80 1","pages":"108888"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Eigensolvers for Nuclear Configuration Interaction Calculations\",\"authors\":\"Abdullah Alperen, H. Aktulga, Pieter Maris, Chao Yang\",\"doi\":\"10.48550/arXiv.2305.15552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine and compare several iterative methods for solving large-scale eigenvalue problems arising from nuclear structure calculations. In particular, we discuss the possibility of using block Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has several desirable properties. We will describe a few practical issues that need to be addressed to make the hybrid solver efficient and robust.\",\"PeriodicalId\":10679,\"journal\":{\"name\":\"Comput. Phys. Commun.\",\"volume\":\"80 1\",\"pages\":\"108888\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Phys. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.15552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Phys. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.15552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究和比较了几种迭代方法,用于解决核结构计算中出现的大规模特征值问题。特别地,我们讨论了使用块Lanczos方法、基于Chebyshev滤波的子空间迭代和通过迭代子空间直接反演加速的残差最小化方法(RMM-DIIS)的可能性,并描述了这些算法与标准Lanczos算法和局部最优块预条件共轭梯度(LOBPCG)算法的比较。虽然当期望特征向量的初始近似不够精确时,RMM-DIIS方法不能表现出快速收敛,但它可以有效地与block Lanczos或LOBPCG方法相结合,从而产生具有几个理想性质的混合特征求解器。我们将描述一些需要解决的实际问题,以使混合求解器高效和鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Eigensolvers for Nuclear Configuration Interaction Calculations
We examine and compare several iterative methods for solving large-scale eigenvalue problems arising from nuclear structure calculations. In particular, we discuss the possibility of using block Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has several desirable properties. We will describe a few practical issues that need to be addressed to make the hybrid solver efficient and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
pyAPEP: An all-in-one software package for the automated preparation of adsorption process simulations pyMCD: Python package for searching transition states via the multicoordinate driven method Improving the detection efficiency of IRAND based on machine learning Two protocols for improving security during the authentication and key agreement procedure in the 3GPP networks VLC systems using NOMA techniques: An overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1