{"title":"韵律和重音信息自动语音识别","authors":"Diego H. Milone, A. Rubio","doi":"10.1109/TSA.2003.814368","DOIUrl":null,"url":null,"abstract":"Various aspects relating to the human production and perception of speech have gradually been incorporated into automatic speech recognition systems. Nevertheless, the set of speech prosodic features has not yet been used in an explicit way in the recognition process itself. This study presents an analysis of prosody's three most important parameters, namely energy, fundamental frequency and duration, together with a method for incorporating this information into automatic speech recognition. On the basis of a preliminary analysis, a design is proposed for a prosodic feature classifier in which these parameters are associated with orthographic accentuation. Prosodic-accentual features are incorporated in a hidden Markov model recognizer; their theoretical formulation and experimental setup are then presented. Several experiments were conducted to show how the method performs with a Spanish continuous-speech database. Using this approach to process other database subsets, we obtained a word recognition error reduction rate of 28.91%.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"2016 1","pages":"321-333"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Prosodic and accentual information for automatic speech recognition\",\"authors\":\"Diego H. Milone, A. Rubio\",\"doi\":\"10.1109/TSA.2003.814368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various aspects relating to the human production and perception of speech have gradually been incorporated into automatic speech recognition systems. Nevertheless, the set of speech prosodic features has not yet been used in an explicit way in the recognition process itself. This study presents an analysis of prosody's three most important parameters, namely energy, fundamental frequency and duration, together with a method for incorporating this information into automatic speech recognition. On the basis of a preliminary analysis, a design is proposed for a prosodic feature classifier in which these parameters are associated with orthographic accentuation. Prosodic-accentual features are incorporated in a hidden Markov model recognizer; their theoretical formulation and experimental setup are then presented. Several experiments were conducted to show how the method performs with a Spanish continuous-speech database. Using this approach to process other database subsets, we obtained a word recognition error reduction rate of 28.91%.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"2016 1\",\"pages\":\"321-333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.814368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.814368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prosodic and accentual information for automatic speech recognition
Various aspects relating to the human production and perception of speech have gradually been incorporated into automatic speech recognition systems. Nevertheless, the set of speech prosodic features has not yet been used in an explicit way in the recognition process itself. This study presents an analysis of prosody's three most important parameters, namely energy, fundamental frequency and duration, together with a method for incorporating this information into automatic speech recognition. On the basis of a preliminary analysis, a design is proposed for a prosodic feature classifier in which these parameters are associated with orthographic accentuation. Prosodic-accentual features are incorporated in a hidden Markov model recognizer; their theoretical formulation and experimental setup are then presented. Several experiments were conducted to show how the method performs with a Spanish continuous-speech database. Using this approach to process other database subsets, we obtained a word recognition error reduction rate of 28.91%.