{"title":"未计量集水区浓度估计的参考时间","authors":"J. Perdikaris, Bahram Gharabaghi, R. Rudra","doi":"10.5539/ESR.V7N2P58","DOIUrl":null,"url":null,"abstract":"Accurate modelling of flood flow hydrographs in ungauged catchments is a challenging task due to large errors in the estimation of its response time using existing empirical equations. The time of concentration (Tc) is a key catchment response time parameter needed for forecasting of the peak discharge rate and the timing of the flood event. At least eight different definitions have been presented in the literature for the time of concentration. In this study, a new definition of “Reference Tc” is presented along with a practical procedure for its estimation using readily available basin catchment characteristic parameters with the aim of standardizing this key parameter for practitioners. Nine different empirical models were calibrated and tested on nine catchments of the Credit River watershed, Ontario, Canada to determine which method would provide the most accurate prediction of the Reference Tc. The NRCS velocity method (1986) proved once again to be the most reliable and an accurate method. This study shows that the main reason for the higher accuracy of the NRCS velocity method predictions compared to the empirical equations is attributed to the inclusion of the Manning's roughness coefficient.","PeriodicalId":11486,"journal":{"name":"Earth Science Research","volume":"32 1","pages":"58"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Reference Time of Concentration Estimation for Ungauged Catchments\",\"authors\":\"J. Perdikaris, Bahram Gharabaghi, R. Rudra\",\"doi\":\"10.5539/ESR.V7N2P58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate modelling of flood flow hydrographs in ungauged catchments is a challenging task due to large errors in the estimation of its response time using existing empirical equations. The time of concentration (Tc) is a key catchment response time parameter needed for forecasting of the peak discharge rate and the timing of the flood event. At least eight different definitions have been presented in the literature for the time of concentration. In this study, a new definition of “Reference Tc” is presented along with a practical procedure for its estimation using readily available basin catchment characteristic parameters with the aim of standardizing this key parameter for practitioners. Nine different empirical models were calibrated and tested on nine catchments of the Credit River watershed, Ontario, Canada to determine which method would provide the most accurate prediction of the Reference Tc. The NRCS velocity method (1986) proved once again to be the most reliable and an accurate method. This study shows that the main reason for the higher accuracy of the NRCS velocity method predictions compared to the empirical equations is attributed to the inclusion of the Manning's roughness coefficient.\",\"PeriodicalId\":11486,\"journal\":{\"name\":\"Earth Science Research\",\"volume\":\"32 1\",\"pages\":\"58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ESR.V7N2P58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ESR.V7N2P58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reference Time of Concentration Estimation for Ungauged Catchments
Accurate modelling of flood flow hydrographs in ungauged catchments is a challenging task due to large errors in the estimation of its response time using existing empirical equations. The time of concentration (Tc) is a key catchment response time parameter needed for forecasting of the peak discharge rate and the timing of the flood event. At least eight different definitions have been presented in the literature for the time of concentration. In this study, a new definition of “Reference Tc” is presented along with a practical procedure for its estimation using readily available basin catchment characteristic parameters with the aim of standardizing this key parameter for practitioners. Nine different empirical models were calibrated and tested on nine catchments of the Credit River watershed, Ontario, Canada to determine which method would provide the most accurate prediction of the Reference Tc. The NRCS velocity method (1986) proved once again to be the most reliable and an accurate method. This study shows that the main reason for the higher accuracy of the NRCS velocity method predictions compared to the empirical equations is attributed to the inclusion of the Manning's roughness coefficient.