通过统计匹配实现数据融合

P. van der Putten, J. Kok, Amarjeet R. Gupta
{"title":"通过统计匹配实现数据融合","authors":"P. van der Putten, J. Kok, Amarjeet R. Gupta","doi":"10.2139/ssrn.297501","DOIUrl":null,"url":null,"abstract":"In data mining applications, the availability of data is often a serious problem. For instance, elementary customer information resides in customer databases, but market survey data are only available for a subset of the customers or even for a different sample of customers. Data fusion provides a way out by combining information from different sources into a single data set for further data mining. While a significant amount of work has been done on data fusion in the past, most of the research has been performed outside of the data mining community. In this paper, we provide an overview of data fusion, introduce basic terminology and the statistical matching approach, distinguish between internal and external evaluation, and we conclude with a larger case study.","PeriodicalId":11485,"journal":{"name":"Econometrics: Applied Econometrics & Modeling eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Data Fusion Through Statistical Matching\",\"authors\":\"P. van der Putten, J. Kok, Amarjeet R. Gupta\",\"doi\":\"10.2139/ssrn.297501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining applications, the availability of data is often a serious problem. For instance, elementary customer information resides in customer databases, but market survey data are only available for a subset of the customers or even for a different sample of customers. Data fusion provides a way out by combining information from different sources into a single data set for further data mining. While a significant amount of work has been done on data fusion in the past, most of the research has been performed outside of the data mining community. In this paper, we provide an overview of data fusion, introduce basic terminology and the statistical matching approach, distinguish between internal and external evaluation, and we conclude with a larger case study.\",\"PeriodicalId\":11485,\"journal\":{\"name\":\"Econometrics: Applied Econometrics & Modeling eJournal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometrics & Modeling eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.297501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometrics & Modeling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.297501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在数据挖掘应用中,数据的可用性通常是一个严重的问题。例如,基本的客户信息驻留在客户数据库中,但市场调查数据只能用于客户的一个子集,甚至只能用于不同的客户样本。数据融合通过将来自不同来源的信息组合成单个数据集,为进一步的数据挖掘提供了一种方法。虽然过去在数据融合方面已经做了大量的工作,但大多数研究都是在数据挖掘社区之外进行的。在本文中,我们概述了数据融合,介绍了基本术语和统计匹配方法,区分了内部和外部评估,并以一个更大的案例研究结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Fusion Through Statistical Matching
In data mining applications, the availability of data is often a serious problem. For instance, elementary customer information resides in customer databases, but market survey data are only available for a subset of the customers or even for a different sample of customers. Data fusion provides a way out by combining information from different sources into a single data set for further data mining. While a significant amount of work has been done on data fusion in the past, most of the research has been performed outside of the data mining community. In this paper, we provide an overview of data fusion, introduce basic terminology and the statistical matching approach, distinguish between internal and external evaluation, and we conclude with a larger case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Causal Models with Optimization: Confounders, Cycles, and Feature Selection Improving the Wisdom of Crowds with Analysis of Variance of Predictions of Related Outcomes Canonical Correlation-based Model Selection for the Multilevel Factors Robust Forecasting Resurrecting the Size Effect: Firm Size, Profitability Shocks, and Expected Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1