物联网的可扩展分布式空间索引

A. Iyer, I. Stoica
{"title":"物联网的可扩展分布式空间索引","authors":"A. Iyer, I. Stoica","doi":"10.1145/3127479.3132254","DOIUrl":null,"url":null,"abstract":"The increasing interest in the Internet-of-Things (IoT) suggests that a new source of big data is imminent---the machines and sensors in the IoT ecosystem. The fundamental characteristic of the data produced by these sources is that they are inherently geospatial in nature. In addition, they exhibit unprecedented and unpredictable skews. Thus, big data systems designed for IoT applications must be able to efficiently ingest, index and query spatial data having heavy and unpredictable skews. Spatial indexing is well explored area of research in literature, but little attention has been given to the topic of efficient distributed spatial indexing. In this paper, we propose Sift, a distributed spatial index and its implementation. Unlike systems that depend on load balancing mechanisms that kick-in post ingestion, Sift tries to distribute the incoming data along the distributed structure at indexing time and thus incurs minimal rebalancing overhead. Sift depends only on an underlying key-value store, hence is implementable in many existing big data stores. Our evaluations of Sift on a popular open source data store show promising results---Sift achieves up to 8× reduction in indexing overhead while simultaneously reducing the query latency and index size by over 2× and 3× respectively, in a distributed environment compared to the state-of-the-art.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A scalable distributed spatial index for the internet-of-things\",\"authors\":\"A. Iyer, I. Stoica\",\"doi\":\"10.1145/3127479.3132254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest in the Internet-of-Things (IoT) suggests that a new source of big data is imminent---the machines and sensors in the IoT ecosystem. The fundamental characteristic of the data produced by these sources is that they are inherently geospatial in nature. In addition, they exhibit unprecedented and unpredictable skews. Thus, big data systems designed for IoT applications must be able to efficiently ingest, index and query spatial data having heavy and unpredictable skews. Spatial indexing is well explored area of research in literature, but little attention has been given to the topic of efficient distributed spatial indexing. In this paper, we propose Sift, a distributed spatial index and its implementation. Unlike systems that depend on load balancing mechanisms that kick-in post ingestion, Sift tries to distribute the incoming data along the distributed structure at indexing time and thus incurs minimal rebalancing overhead. Sift depends only on an underlying key-value store, hence is implementable in many existing big data stores. Our evaluations of Sift on a popular open source data store show promising results---Sift achieves up to 8× reduction in indexing overhead while simultaneously reducing the query latency and index size by over 2× and 3× respectively, in a distributed environment compared to the state-of-the-art.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3132254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3132254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

人们对物联网(IoT)日益增长的兴趣表明,一个新的大数据来源即将到来——物联网生态系统中的机器和传感器。这些来源产生的数据的基本特征是它们本质上是地理空间的。此外,它们还表现出前所未有的、不可预测的偏差。因此,为物联网应用设计的大数据系统必须能够有效地摄取、索引和查询具有严重和不可预测偏差的空间数据。空间标引是文献中研究较多的领域,但关于高效分布式空间标引的研究却很少。本文提出了一种分布式空间索引Sift及其实现方法。与依赖于摄取后启动的负载平衡机制的系统不同,Sift尝试在索引时沿着分布式结构分发传入的数据,从而产生最小的再平衡开销。Sift仅依赖于底层的键值存储,因此可以在许多现有的大数据存储中实现。我们在一个流行的开源数据存储上对Sift进行的评估显示出了令人鼓舞的结果——与最先进的方法相比,在分布式环境中,Sift将索引开销减少了8倍,同时将查询延迟和索引大小分别减少了2倍和3倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scalable distributed spatial index for the internet-of-things
The increasing interest in the Internet-of-Things (IoT) suggests that a new source of big data is imminent---the machines and sensors in the IoT ecosystem. The fundamental characteristic of the data produced by these sources is that they are inherently geospatial in nature. In addition, they exhibit unprecedented and unpredictable skews. Thus, big data systems designed for IoT applications must be able to efficiently ingest, index and query spatial data having heavy and unpredictable skews. Spatial indexing is well explored area of research in literature, but little attention has been given to the topic of efficient distributed spatial indexing. In this paper, we propose Sift, a distributed spatial index and its implementation. Unlike systems that depend on load balancing mechanisms that kick-in post ingestion, Sift tries to distribute the incoming data along the distributed structure at indexing time and thus incurs minimal rebalancing overhead. Sift depends only on an underlying key-value store, hence is implementable in many existing big data stores. Our evaluations of Sift on a popular open source data store show promising results---Sift achieves up to 8× reduction in indexing overhead while simultaneously reducing the query latency and index size by over 2× and 3× respectively, in a distributed environment compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1