{"title":"查询分解:基于内容的图像检索中相关反馈处理的多邻域方法","authors":"K. Hua, Ning Yu, Danzhou Liu","doi":"10.1109/ICDE.2006.123","DOIUrl":null,"url":null,"abstract":"Today’s Content-Based Image Retrieval (CBIR) techniques are based on the \"k-nearest neighbors\" (k- NN) model. They retrieve images from a single neighborhood using low-level visual features. In this model, semantically similar images are assumed to be clustered in the high-dimensional feature space. Unfortunately, no visual-based feature vector is sufficient to facilitate perfect semantic clustering; and semantically similar images with different appearances are always clustered into distinct neighborhoods in the feature space. Confinement of the search results to a single neighborhood is an inherent limitation of the k-NN techniques. In this paper we consider a new image retrieval paradigm — the Query Decomposition model - that facilitates retrieval of semantically similar images from multiple neighborhoods in the feature space. The retrieval results are the k most similar images from different relevant clusters. We introduce a prototype, and present experimental results to illustrate the effectiveness and efficiency of this new approach to content-based image retrieval.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"54 1","pages":"84-84"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Query Decomposition: A Multiple Neighborhood Approach to Relevance Feedback Processing in Content-based Image Retrieval\",\"authors\":\"K. Hua, Ning Yu, Danzhou Liu\",\"doi\":\"10.1109/ICDE.2006.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s Content-Based Image Retrieval (CBIR) techniques are based on the \\\"k-nearest neighbors\\\" (k- NN) model. They retrieve images from a single neighborhood using low-level visual features. In this model, semantically similar images are assumed to be clustered in the high-dimensional feature space. Unfortunately, no visual-based feature vector is sufficient to facilitate perfect semantic clustering; and semantically similar images with different appearances are always clustered into distinct neighborhoods in the feature space. Confinement of the search results to a single neighborhood is an inherent limitation of the k-NN techniques. In this paper we consider a new image retrieval paradigm — the Query Decomposition model - that facilitates retrieval of semantically similar images from multiple neighborhoods in the feature space. The retrieval results are the k most similar images from different relevant clusters. We introduce a prototype, and present experimental results to illustrate the effectiveness and efficiency of this new approach to content-based image retrieval.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"54 1\",\"pages\":\"84-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Query Decomposition: A Multiple Neighborhood Approach to Relevance Feedback Processing in Content-based Image Retrieval
Today’s Content-Based Image Retrieval (CBIR) techniques are based on the "k-nearest neighbors" (k- NN) model. They retrieve images from a single neighborhood using low-level visual features. In this model, semantically similar images are assumed to be clustered in the high-dimensional feature space. Unfortunately, no visual-based feature vector is sufficient to facilitate perfect semantic clustering; and semantically similar images with different appearances are always clustered into distinct neighborhoods in the feature space. Confinement of the search results to a single neighborhood is an inherent limitation of the k-NN techniques. In this paper we consider a new image retrieval paradigm — the Query Decomposition model - that facilitates retrieval of semantically similar images from multiple neighborhoods in the feature space. The retrieval results are the k most similar images from different relevant clusters. We introduce a prototype, and present experimental results to illustrate the effectiveness and efficiency of this new approach to content-based image retrieval.