混合模型在双重膨胀计数数据中的应用

Monika Arora, N. Chaganty
{"title":"混合模型在双重膨胀计数数据中的应用","authors":"Monika Arora, N. Chaganty","doi":"10.3390/analytics2010014","DOIUrl":null,"url":null,"abstract":"In health and social science and other fields where count data analysis is important, zero-inflated models have been employed when the frequency of zero count is high (inflated). Due to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate for such situations. The ZkIP model is a mixture distribution with three components: degenerate distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated and non-inflated counterparts. The best model is selected based on commonly used criteria. The theoretical results are supplemented with the analysis of two real-life datasets from health sciences.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Mixture Models for Doubly Inflated Count Data\",\"authors\":\"Monika Arora, N. Chaganty\",\"doi\":\"10.3390/analytics2010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In health and social science and other fields where count data analysis is important, zero-inflated models have been employed when the frequency of zero count is high (inflated). Due to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate for such situations. The ZkIP model is a mixture distribution with three components: degenerate distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated and non-inflated counterparts. The best model is selected based on commonly used criteria. The theoretical results are supplemented with the analysis of two real-life datasets from health sciences.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在卫生和社会科学以及计数数据分析很重要的其他领域,当零计数的频率很高(膨胀)时,采用零膨胀模型。由于多种原因,在某些情况下,经常会出现k > 0的附加计数值。零膨胀和k膨胀的泊松分布模型(ZkIP)更适合于这种情况。ZkIP模型是由三个组成部分组成的混合分布:0和k计数的简并分布和泊松分布。在本文中,我们提出了一种替代和计算速度快的期望最大化(EM)算法来获得分组零和k膨胀计数数据的参数估计。用完全数据法推导了渐近标准误差。我们将零膨胀和k膨胀的泊松模型与零膨胀和非膨胀的泊松模型进行比较。根据常用标准选择最佳模型。理论结果补充了来自健康科学的两个现实数据集的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Mixture Models for Doubly Inflated Count Data
In health and social science and other fields where count data analysis is important, zero-inflated models have been employed when the frequency of zero count is high (inflated). Due to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate for such situations. The ZkIP model is a mixture distribution with three components: degenerate distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated and non-inflated counterparts. The best model is selected based on commonly used criteria. The theoretical results are supplemented with the analysis of two real-life datasets from health sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
A Comparative Analysis of VirLock and Bacteriophage ϕ6 through the Lens of Game Theory Can Oral Grades Predict Final Examination Scores? Case Study in a Higher Education Military Academy Relating the Ramsay Quotient Model to the Classical D-Scoring Rule An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market A Novel Curve Clustering Method for Functional Data: Applications to COVID-19 and Financial Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1