冷却对流层对稳定分层成分梯度的穿透:低普朗特数夹带

J. Fuentes, A. Cumming
{"title":"冷却对流层对稳定分层成分梯度的穿透:低普朗特数夹带","authors":"J. Fuentes, A. Cumming","doi":"10.1103/PhysRevFluids.5.124501","DOIUrl":null,"url":null,"abstract":"We study the formation and evolution of a convective layer when a stably-stratified fluid with a composition gradient is cooled from above. We perform a series of 2D simulations using the Bousinessq approximation with Prandtl number ranging from Pr = 0.1 to 7, extending previous work on salty water to low Pr. We show that the evolution of the convection zone is well-described by an entrainment prescription in which a fixed fraction of the kinetic energy of convective motions is used to mix fluid at the interface with the stable layer. We measure the entrainment efficiency and find that it grows with decreasing Prandtl number or increased applied heat flux. The kinetic energy flux that determines the entrainment rate is a small fraction of the total convective luminosity. In this time-dependent situation, the density ratio at the interface is driven to a narrow range that depends on the value of Pr, and with low enough values that advection dominates the interfacial transport. We characterize the interfacial flux ratio and how it depends on the interface stability. We present an analytic model that accounts for the growth of the convective layer with two parameters, the entrainment efficiency and the interfacial heat transport, both of which can be measure from the simulations.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Penetration of a cooling convective layer into a stably-stratified composition gradient: Entrainment at low Prandtl number\",\"authors\":\"J. Fuentes, A. Cumming\",\"doi\":\"10.1103/PhysRevFluids.5.124501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the formation and evolution of a convective layer when a stably-stratified fluid with a composition gradient is cooled from above. We perform a series of 2D simulations using the Bousinessq approximation with Prandtl number ranging from Pr = 0.1 to 7, extending previous work on salty water to low Pr. We show that the evolution of the convection zone is well-described by an entrainment prescription in which a fixed fraction of the kinetic energy of convective motions is used to mix fluid at the interface with the stable layer. We measure the entrainment efficiency and find that it grows with decreasing Prandtl number or increased applied heat flux. The kinetic energy flux that determines the entrainment rate is a small fraction of the total convective luminosity. In this time-dependent situation, the density ratio at the interface is driven to a narrow range that depends on the value of Pr, and with low enough values that advection dominates the interfacial transport. We characterize the interfacial flux ratio and how it depends on the interface stability. We present an analytic model that accounts for the growth of the convective layer with two parameters, the entrainment efficiency and the interfacial heat transport, both of which can be measure from the simulations.\",\"PeriodicalId\":8493,\"journal\":{\"name\":\"arXiv: Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevFluids.5.124501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevFluids.5.124501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了具有组成梯度的稳定分层流体从上方冷却时对流层的形成和演化。我们使用普朗特数范围从Pr = 0.1到7的Bousinessq近似进行了一系列二维模拟,将以前对咸水的研究扩展到低Pr。我们表明,对流区的演变可以通过一个携带处方很好地描述,在这个处方中,对流运动动能的固定分数用于混合界面处的流体与稳定层。我们测量了夹带效率,发现它随普朗特数的减小或外加热流密度的增大而增大。决定夹带率的动能通量只占总对流光度的一小部分。在这种与时间相关的情况下,界面处的密度比被驱动到一个狭窄的范围,该范围取决于Pr的值,并且足够低的值使得平流主导界面输运。我们描述了界面通量比,以及它如何依赖于界面稳定性。我们提出了一个解析模型,用两个参数来解释对流层的增长,即夹带效率和界面热传输,这两个参数都可以从模拟中测量出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penetration of a cooling convective layer into a stably-stratified composition gradient: Entrainment at low Prandtl number
We study the formation and evolution of a convective layer when a stably-stratified fluid with a composition gradient is cooled from above. We perform a series of 2D simulations using the Bousinessq approximation with Prandtl number ranging from Pr = 0.1 to 7, extending previous work on salty water to low Pr. We show that the evolution of the convection zone is well-described by an entrainment prescription in which a fixed fraction of the kinetic energy of convective motions is used to mix fluid at the interface with the stable layer. We measure the entrainment efficiency and find that it grows with decreasing Prandtl number or increased applied heat flux. The kinetic energy flux that determines the entrainment rate is a small fraction of the total convective luminosity. In this time-dependent situation, the density ratio at the interface is driven to a narrow range that depends on the value of Pr, and with low enough values that advection dominates the interfacial transport. We characterize the interfacial flux ratio and how it depends on the interface stability. We present an analytic model that accounts for the growth of the convective layer with two parameters, the entrainment efficiency and the interfacial heat transport, both of which can be measure from the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Found: a rapidly spinning white dwarf in LAMOST J024048.51+195226.9 Magnetic helicity and energy budget around large confined and eruptive solar flares. On the Periods and Nature of Superhumps Deciphering Solar Magnetic Activity. II. The Solar Cycle Clock and the Onset of Solar Minimum Conditions Mapping the Youngest and Most Massive Stars in the Tarantula Nebula with MUSE-NFM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1