高浓度悬浮液的非牛顿双层模型的评价

C. Fraser, P. Goosen
{"title":"高浓度悬浮液的非牛顿双层模型的评价","authors":"C. Fraser, P. Goosen","doi":"10.36487/ACG_REP/1910_40_GOOSEN","DOIUrl":null,"url":null,"abstract":"High concentration thickened tailings slurries that appear to be homogeneous mixtures often contain coarse particles that settle in the pipeline under laminar flow conditions. During pipeline transport, these coarse particles may eventually settle to the pipe invert. Frequently, these high concentration suspensions are misclassified as homogeneous slurries, leading to the use of incorrect models for predicting the pressure gradient and flow behaviour. \nThis paper discusses the use of a non-Newtonian two-layer model to predict the pressure gradient of a high concentration suspension with a sliding bed in laminar flow conditions. The success of the model is measured by comparing the results obtained by applying the model to experimental results for a typical iron ore tailings slurry. It was found that the model predicted the laminar flow pressure gradient with less than 10% error for slurries with carrier fluid yield stresses above 10 Pa.","PeriodicalId":20480,"journal":{"name":"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of a non-Newtonian two-layer model for high concentration suspensions\",\"authors\":\"C. Fraser, P. Goosen\",\"doi\":\"10.36487/ACG_REP/1910_40_GOOSEN\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High concentration thickened tailings slurries that appear to be homogeneous mixtures often contain coarse particles that settle in the pipeline under laminar flow conditions. During pipeline transport, these coarse particles may eventually settle to the pipe invert. Frequently, these high concentration suspensions are misclassified as homogeneous slurries, leading to the use of incorrect models for predicting the pressure gradient and flow behaviour. \\nThis paper discusses the use of a non-Newtonian two-layer model to predict the pressure gradient of a high concentration suspension with a sliding bed in laminar flow conditions. The success of the model is measured by comparing the results obtained by applying the model to experimental results for a typical iron ore tailings slurry. It was found that the model predicted the laminar flow pressure gradient with less than 10% error for slurries with carrier fluid yield stresses above 10 Pa.\",\"PeriodicalId\":20480,\"journal\":{\"name\":\"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36487/ACG_REP/1910_40_GOOSEN\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36487/ACG_REP/1910_40_GOOSEN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高浓度的浓稠尾砂浆体表现为均匀混合物,往往含有粗颗粒,在层流条件下沉降在管道中。在管道输送过程中,这些粗颗粒可能最终沉降到管道的倒立处。通常,这些高浓度悬浮液被错误地归类为均匀浆液,导致使用不正确的模型来预测压力梯度和流动行为。本文讨论了用非牛顿两层模型预测层流条件下含滑动床的高浓度悬浮液的压力梯度。将该模型与某典型铁矿尾矿浆体的试验结果进行对比,验证了该模型的有效性。结果表明,当载液屈服应力大于10 Pa时,该模型预测的层流压力梯度误差小于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of a non-Newtonian two-layer model for high concentration suspensions
High concentration thickened tailings slurries that appear to be homogeneous mixtures often contain coarse particles that settle in the pipeline under laminar flow conditions. During pipeline transport, these coarse particles may eventually settle to the pipe invert. Frequently, these high concentration suspensions are misclassified as homogeneous slurries, leading to the use of incorrect models for predicting the pressure gradient and flow behaviour. This paper discusses the use of a non-Newtonian two-layer model to predict the pressure gradient of a high concentration suspension with a sliding bed in laminar flow conditions. The success of the model is measured by comparing the results obtained by applying the model to experimental results for a typical iron ore tailings slurry. It was found that the model predicted the laminar flow pressure gradient with less than 10% error for slurries with carrier fluid yield stresses above 10 Pa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An economy and ecosystem symbiosis: barrier systems for water conservation and pollution control Online rheology monitoring of a thickener underflow Applying image classification to develop artificial intelligence for tailings storage facility hazard monitoring using site-based cameras Disposal of tailings and the mining industry perspective: a case study of the Cuiabá Mine Underground paste fill reticulation management of system flow-loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1