基于不均匀光照图像固定和改进分支定界算法的精子细胞鲁棒跟踪算法

Ahmad Alhaj Alabdulla, A. Hasiloglu, E. Aksu
{"title":"基于不均匀光照图像固定和改进分支定界算法的精子细胞鲁棒跟踪算法","authors":"Ahmad Alhaj Alabdulla, A. Hasiloglu, E. Aksu","doi":"10.1049/IPR2.12178","DOIUrl":null,"url":null,"abstract":"An accurate and robust sperm cells tracking algorithm that is able to detect and track sperm cells in videos with high accuracy and efficiency is presented. It is fast enough to process approximately 30 frames per second. It can find the correct path and measure motility parameters for each sperm. It can also adapt with different types of images coming from different cameras and bad recording conditions. Specifically, a new way is offered to optimize uneven lighting images to improve sperm cells detection which gives us the ability to get more accurate tracking results. The shape of each detected object is used to specify collided sperms and utilized dynamic gates which become bigger and smaller according to the sperm cell’s speed. For assigning tracks to the detected sperm cells positions an improved version of branch and bound algorithm which is faster than the normal one is offered. This sperm cells tracking algorithm outperforms many of the previous algorithms as it has lower error rate in both sperm detection and tracking. It is compared with six other algorithms, and it gives lower tracking error rates. This method will allow doctors and researchers to obtain sperm motility data instantly and accurately.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"119 1","pages":"2068-2079"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A robust sperm cell tracking algorithm using uneven lighting image fixing and improved branch and bound algorithm\",\"authors\":\"Ahmad Alhaj Alabdulla, A. Hasiloglu, E. Aksu\",\"doi\":\"10.1049/IPR2.12178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate and robust sperm cells tracking algorithm that is able to detect and track sperm cells in videos with high accuracy and efficiency is presented. It is fast enough to process approximately 30 frames per second. It can find the correct path and measure motility parameters for each sperm. It can also adapt with different types of images coming from different cameras and bad recording conditions. Specifically, a new way is offered to optimize uneven lighting images to improve sperm cells detection which gives us the ability to get more accurate tracking results. The shape of each detected object is used to specify collided sperms and utilized dynamic gates which become bigger and smaller according to the sperm cell’s speed. For assigning tracks to the detected sperm cells positions an improved version of branch and bound algorithm which is faster than the normal one is offered. This sperm cells tracking algorithm outperforms many of the previous algorithms as it has lower error rate in both sperm detection and tracking. It is compared with six other algorithms, and it gives lower tracking error rates. This method will allow doctors and researchers to obtain sperm motility data instantly and accurately.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"119 1\",\"pages\":\"2068-2079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IPR2.12178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IPR2.12178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种精确、鲁棒的精子细胞跟踪算法,能够高精度、高效率地检测和跟踪视频中的精子细胞。它足够快,每秒可以处理大约30帧。它可以找到正确的路径并测量每个精子的运动参数。它还可以适应来自不同相机的不同类型的图像和恶劣的记录条件。具体来说,提供了一种新的方法来优化不均匀光照图像,以提高精子细胞的检测,使我们能够获得更准确的跟踪结果。每个被检测物体的形状被用来指定碰撞的精子,并利用动态门根据精子的速度变大或变小。为了给检测到的精子定位分配轨迹,提出了一种改进的分支绑定算法,该算法比常规算法更快。该算法在精子检测和跟踪方面具有较低的错误率,优于以往的许多算法。与其他六种算法进行了比较,结果表明该算法具有较低的跟踪错误率。这种方法将使医生和研究人员能够即时准确地获得精子运动数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust sperm cell tracking algorithm using uneven lighting image fixing and improved branch and bound algorithm
An accurate and robust sperm cells tracking algorithm that is able to detect and track sperm cells in videos with high accuracy and efficiency is presented. It is fast enough to process approximately 30 frames per second. It can find the correct path and measure motility parameters for each sperm. It can also adapt with different types of images coming from different cameras and bad recording conditions. Specifically, a new way is offered to optimize uneven lighting images to improve sperm cells detection which gives us the ability to get more accurate tracking results. The shape of each detected object is used to specify collided sperms and utilized dynamic gates which become bigger and smaller according to the sperm cell’s speed. For assigning tracks to the detected sperm cells positions an improved version of branch and bound algorithm which is faster than the normal one is offered. This sperm cells tracking algorithm outperforms many of the previous algorithms as it has lower error rate in both sperm detection and tracking. It is compared with six other algorithms, and it gives lower tracking error rates. This method will allow doctors and researchers to obtain sperm motility data instantly and accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mask-Guided Image Person Removal with Data Synthesis EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion Visible part prediction and temporal calibration for pedestrian detection STDC-MA Network for Semantic Segmentation Multi-similarity based Hyperrelation Network for few-shot segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1